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Abstract. This paper demonstrates some examples that show the abil-
ity of reaction-diffusion mechanism to code the curvature of forms of
multi-cellular systems. The simulation model consists of two layers: the
first generates reaction-diffusion waves and the second diffuses chemical
substances. The results show that topology changes feedback information
to the reaction-diffusion mechanism allowing the control of the morpho-
genetic process.
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1 Introduction

Multicellular organisms usually consist of a large number of cells, which are able
to form the shape of an organism by an intricate web of cell-cell interactions,
a process called morphogenesis. As each cell contains the same genome, this
feat is realized in a distributed and autonomous way with the absence of any
centralized control. Although the elucidation of the molecular mechanisms made
big progress in biology, an overall picture is still lacking.

In this paper, we hypothesize that morphogenesis depends on the following
two conditions:

1. Chemical substances (morphogens) play a role in encoding directly mor-
phological information. In this paper we hypothesize that some substances
transmit information by its concentration.

2. Morphogenesis is an autonomous, distributed process without any central-
ized control for all cells.

We used these two conditions as guidelines to screen the existing literature
of morphogenetic models. Alan Turing’s reaction-diffusion model [1] uses two
chemical substances able to produce spatial patterns in space. As this model
uses gradients the first condition is fulfilled, but was not used to form shapes.
Essentially reaction-diffusion mechanisms are means of breaking the symme-
try among homogenous cells in autonomous and distributed way and therefore



it also fulfills the second condition. L.Wolpert suggested the concept of posi-
tional information enabling the cells to know where they are [2]. Gierer and
Meinhardt [3] used Turing’s model for pattern formations. Murray [4,5] also
presented a possible mechanism for pattern formation in animal markings us-
ing reaction-diffusion. Crampin [6] explored the patterns of reaction-diffusion
wave accompanied by the extension of space. Kondo [7] pointed out that the
change of the stripe pattern in angelfish is driven by reaction-diffusion mecha-
nism. C.Furusawa and K.Kaneko [14] found the phenomena of dynamical cell
differentiation by creating their own model. However, all the above examples
are mainly focused on pattern generation and not on shape forming. There ex-
ist many approaches for morphogenesis - especially in the field of Artificial Life
- which can be divided into several types: Lindenmayer grammars [11], cellu-
lar automata [12, 18], strictly mechanical approaches where physical interactions
between the cells were programmed to simulate morphological processes [10],
recurrent diagram networks to express the bodies of simulated creatures [13].
However, the correspondence between these models and real organisms has been
considered less seriously. More recently there was renewal of interest in the re-
lations between gene regulatory networks and morphology [15][17][16][19][20],
but these models pay little attention to the relation between morphogenesis and
reaction-diffusion mechanism. The reason may be that only a few people noticed
a possible link between pattern generation and morphological form of creatures.
In this paper the linking between reaction-diffusion mechanisms and cell divi-
sion and physical interactions between the cells can be used to produce shapes
of organisms. We focused our research on the change of the geometric topology
of cellular networks and found that topology changes can be used to feedback
information from the transformed field to the reaction-diffusion mechanism. This
feedback made it possible to create a model of the gastro-intestinal tract as an
example to show how each homogeneous cell realizes global shapes by computer
simulation. The main point of this paper is that the feedback of information
of topological changes about the reaction-diffusion mechanism is an essential
ingredient to model morphogenetic processes by reaction-diffusion approaches.
This paper is constituted as follows: First biological background is explained,
reaction-diffusion system and the developed model are presented in the next
section 2. In the third section, the simulation results are shown and the fourth
section discusses the results and the conclusions are presented in the last section.

2 Model

In general, multicellular organisms, especially animals, have a gastrointestinal
tract, which is essentially a tube from mouth to anus. A cross section of the gas-
trointestinal tract in humans can be divided into three layers. Going from the
inside to outside, the first layer is the epithelium that covers the surface with
epithelial cells, connective tissue, and a muscular coat that takes on a role of con-
traction [8]. Epithelial cells are connected to each other through tight junctions,
adhesion belts by cadherins and desmosomes, and gap junctions through which



small molecules can pass. Epithelial cells connect to a matrix below (Extra-
Cellular-matrix:ECM) via hemidesmosomes or integrins. For a long time, the
ECM had been considered as a physical crutch or anchorage. Recently, however,
it became clear that the ECM has more active functions such as passing some
specific molecules or controlling the form of a cell that is attached to it. Taking
the human gastrointestinal tract as an example, three kinds of curvatures of
different scales on epithelium layer can be observed. They are called plicae cir-
culares, villi and microvilli in descending order. This architecture increases the
surface area, which facilitates the uptake of food by the gastrointestinal tract.
Focusing on this hierarchical form of the epithelial surface, H.Honda advocates
that in general the form of multi cellular system is realized as two-dimensional
sheets rather than three-dimensional solids [9].

2.1 Two layer reaction-diffusion model

Epithelial layer

epithelial layer

ECM layer

Fig. 1. Two layer model. Upper layer represents epithelial cells and lower layer rep-
resents ECM. Epithelial layer can generate reaction-diffusion wave. ECM just diffuses
chemical substances.

The cross-section of the gastrointestinal tract can be modeled as two layers
for simplification, the epithelial layer and the ECM, which includes submocosal
layer and the below. The simulations are performed on a one-dimensional cell
array. Fig.1 shows a schema of this model and its correspondence to the bio-
logical gastrointestinal tract. Upper nodes represent cells, lower ones represent
connection points of each epithelial cells and ECM. Both are expressed as mass
points. Links between them are represented as chemical and mechanical con-
nections (chemical substances only diffuse through horizontal and vertical con-
nections, see Fig.1). The mechanical interactions are expressed as spring and
damper connections. Epithelial cells contain two chemical substances that react
and diffuse, in order to generate reaction-diffusion waves. A reaction-diffusion
wave is a periodic spatial concentration pattern (see [1]). The general form of
a two chemical reaction-diffusion system can be expressed as partial differential
equations (eq.1,2).



i = f(u,v) + D, V*u (1)
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Where u, v represent concentrations of the two chemicals, f(u,v) and g(u,v)
represent reaction parts between chemicals u and v, respectively. V2u and V?v
represent the Laplacian of v and v respectively. D,,, D,, and D represent diffu-
sion coefficient of activator, inhibitor and also activator, respectively. Usually a
proportion D, /D, plays a key role in the behavior of reaction-diffusion system.
Since chemical substances diffuse to neighboring cells and the ECM via different
channel, it seems reasonable to assume that the diffusion coefficients differ among
internal epithelial connections and among epithelial-ECM connections. We set
that only the activator can pass through the connection between epithelial cell
and ECM. Eq.3,4 is applied for the reaction part, which adds the non-linear term
(underlined in eq.3,4) to the Turing’s model in order to be more stable fulfilling
a definition of activator and inhibitor (% <0, g—Z > 0). The equilibrium points
are the same as Turing’s (v = 1.0,v = 1.0). The function of the ECM is just
to diffuse chemical substances. Its general form can be expressed in eq.5. To
the system, Dirichlet boundary conditions were applied, which set the chemical
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Here,u1,un,v1,vn,Ur,Un represent the concentrations of boundary cells and
ECM.

2.2 Cell cycle and cell division

Cell cycle is determined by various factors, in this paper, the condition for cell
division depends on the concentration and a specific threshold. Cells divide when
the concentration of the activator is kept over a specific threshold for a certain
time. The concentration of each chemical substance right before division is ap-
plied to the concentration of the cell divided.

Fig.2 illustrates the rule controlling how cells reconnect after they divided.
Where a represents distance from epithelial cell to ECM and b represents connec-
tion length between two cells. Fig.2 a) shows that after each cell divides, a new
link is added, then an 2sin(b/2a)[rad] angle of curvature is created depending
on the ratio of the length of horizontal and vertical links. Since the operating
mechanism of the extend speed of ECM hasn’t been clear, the ECM’s extension
speed is assumed to be constant. Fig.2 b) illustrates the correspondence to real
tissue after the curvature is created.
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Fig. 2. Reconnection by cell division. a)After each cell divides, a new link is added,
then an 2sin(b/2a)[rad] angle of curvature is created depending on the ratio of the
length of horizontal and vertical links. b)Correspondence to real tissue.

3 Simulations
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By discretizing the space the eq.6,7 can be obtained from eq.3,4. In the same
way, eq.8 can be obtained from eq.5. These equations are used to calculate the
dynamics of the chemicals, where, u, and v, represents the concentration of
activator and inhibitor in epithelium cell, respectively. Uy represents the con-
centration of activator in ECM. Subscript r» and k is an identification num-
ber of the cell and the ECM, respectively. The parameters are set as follows:
D = DuECM = 1.0, D = 3.0, Duepi_ECM = 0.53, Uthreshold = 1.035, initial
concentration (u,v) = (1.0, 1.0)(equilibrium point). If the concentration exceeds
a division threshold for more than 50 steps (step is defined below), a cell divides.
Initial perturbations are always added at the center of the epithelial layer.

Uepi Vepi
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Cells move on a two-dimensional space. The equation of motion for the cell
i is expressed in eq.9 where subscript i,j is an identification number of the
cell or connection point to ECM. The position of the cell ¢; is defined as a
vector. The cell which exists in neighbor of cell i is denoted as j. m,c, k, and [
denote mass, damper coefficient, spring coefficient and natural length of spring,
respectively. These parameters are set as follows: m = 9,¢ = 30,k = 50, lpor =
18,lyer = 40. Every differential equation is integrated by the Euler method
(6t = 0.05, 1step=204t). Mechanical forces are calculated assuming in vivo time
scales (6t = 0.005, 1step=604t).
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Fig. 3. Simulation results in chronological order. a)Sectional side view of the gas-
trointestinal tract (Fig.1 B). It can be seen that layers bend by cell division. b)The
longitudinal section of the gastrointestinal tract (Fig.1 A). Curvatures are also created
independently of the boundary condition. c)Sectional side view of the gastrointestinal
tract (Fig.1 B). Unexpectedly, two different curvatures of different scales are formed
like Koch-curve. In all results, epithelial cells stop dividing automatically at the end.

Fig.3 a),b), and c¢) show the simulation results in chronological order. The
number of initial epithelial cells are set to 8,64 and 128, respectively. White
colored cells represent those in which the concentrations of activator exceed the
threshold. Fig.3 a) shows a sectional side view of the gastrointestinal tract (Fig.1
B). It can be seen that the curvature is created depending on the difference
of the extension speed between epithelial layer and ECM. Fig.3 b) shows the
longitudinal section of the gastrointestinal tract. The internal layer corresponds



to the epithelial layer and the external layer to the ECM (Fig.1 A). Perturbation
is added on the top. Curvatures are also created independently of the boundary
condition. Fig.3 ¢) shows a sectional side view of gastrointestinal tract (Fig.1
B). As time passes, unexpectedly, two different curvatures of different scales are
formed on the surface. Finally, fractal hierarchies like Koch-curve are observed
(We shall return to this point later). In all results, it can be seen that epithelial
cells stop dividing automatically at the end.

Fig.4 a) and b) show the concentration transition of all cells that start at
128 cells. a) and b) show concentration of activator with division threshold and
inhibitor, respectively. X-axis represents time and Y represents concentration.
As time passes, these concentrations converge and none of the concentrations of
activator exceed division threshold after 329 steps. ¢) and d) show the increase of
cell number. The X-axis represents time and Y-axis number of cells in logarithmic
scale. (lines pointed by arrows in c) and d) show this model). To quantify the
role of the ECM, the diffusion coefficient between the epithelial layer and the
ECM changed from 0.0 to 0.8 and plotted on ¢). The figure shows the smaller the
coefficient is, the faster the cell grows. When the diffusion coefficient is 0.8, the
number of cells doesn’t change, because none of the concentrations of activator
exceed threshold. This indicates that the diffusion coefficient between epithelial
layer and ECM influences the speed of cell growth. Initial number of cells is
changed and plotted in d). It can be seen that the growth mechanism converges
independently of the initial number of the cells. The growth rate doesn’t change
after each transition (around 220% to 250%).

4 Discussions

4.1 The suppression of amplitude of reaction-diffusion wave

Fig.5 shows the maximal amplitude of the activator’s concentration generated
by the epithelial layer after the number of cells increased from 5 to 11 in different
cell topologies (A and B). The X-axis represents the number of cells and the Y-
axis the largest concentration. It can be seen that the increase of the curvature
suppresses the reaction-diffusion wave. When the number of cells becomes larger
than 8, all concentrations of activator become below threshold. This is because
the ECM, which connects several cells plays a role of averaging activator that
is contained in epithelial cell (Eq.8). Thus as the number of connecting cells
increases, concentration of ECM becomes closer to the average of all concentra-
tions that connect (usually u = 1.0). Consequently, the reaction-diffusion wave
is inhibited. This can also be confirmed by settling all concentration of activator
of ECM 1.0 when layers are straight.

Fig.6 shows the growth speed of epithelial cells depending on two parameters:
the division threshold and the diffusion coefficient between epithelial layer and
ECM. The growth speed is defined as follows: the number of cells at 300 steps
/ initial number of cells (this time 8). In fig.6 a), X-axis represents diffusion
coefficient, y division threshold and z growth speed. In fig.6 b), X-Y plane area
is also represented with contours and its forms when the growing speed is 1.5, 2.0,
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Fig. 4. Transition graph. a)Transition of concentration of activator. b)Inhibitor. These
concentrations converge as time passes and no concentration of activator exceeds di-
vision threshold after 329 steps. ¢)d)Increase of the number of cells. ¢)To quantify the
role of the ECM, the diffusion coefficient between the epithelial layer and the ECM is
changed from 0.0 to 0.8 and plotted on it. As the figure shows the smaller the coefficient
is, the faster the cells grow. d)Only the initial number of cells differs. It is revealed that
the mechanism of growth convergence is not dependent on the initial number.
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Fig. 5. Maximal amplitude of the activator’s concentration. Increase of the curvature
suppresses reaction-diffusion wave.

and 2.25. By shifting diffusion coefficient to smaller, the ratio of reaction-parts
/ diffusion-parts gets lager in their reaction-diffusion system. This makes the
amplitude of reaction-diffusion wave bigger: the smaller the diffusion coefficient
becomes, the faster growth speed becomes.
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Fig. 6. Growth speed of epithelial cells depending on two parameters. a) The X-axis
represents diffusion coefficient, Y represents division threshold and Z represents growth
speed. b) X-Y plane area of the same figure. Though it seems these parameters have
thin range, note that the curvature depends on the ratio of horizontal-vertical length
of the links (see Fig.2).

4.2 Hierarchy of the form

In Fig. 3 ¢), two different scales of curvatures are formed (A and B). The small
curvatures are formed because the epithelial layer and the ECM have different
extending speeds. The large scales are created due to mechanical interactions
between cells, which extend initial small mechanical perturbations due to cell
divisions. This large curvature is always observed, when the layers have a certain
length. Each curvature is formed based on their mechanisms and this is the
reason why the scales vary. Since friction between gastrointestinal organs and
its outer has not been modeled, external forces can erase the large curvature.

5 Conclusions

This paper focused on geometric topology changes of cell networks and shows
that topology changes enable reaction-diffusion mechanisms to control morpho-
logic process. In other words, the shape that is driven by reaction-diffusion can
build up a feedback loop back to reaction-diffusion mechanism. The model is
comprised of two layers: one is the epithelial layer that generates reaction diffu-
sion waves and the other is the ECM that diffuses chemical substances. Cells di-
vide depending on the reaction-diffusion mechanism. Once the shape gets round,
chemical substances are averaged at middle point, inhibiting the amplitude of
the reaction-diffusion wave. Since the cell division depends on the concentration
of activator in this model, it restricts system’s growth. This closed feedback loop
is one of the autonomous distributed ways to code morphogenesis by supposing
that chemical substances act as a transmitters of positional information.
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