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Abstract

This paper reports on the morphogenesis of three-
dimensional folding sheets in computer simulation. In
order to exploit the topology of these cellular sheets,
we introduced cell connection map, which can pre-
script cell connections regardless of changing the num-
ber of cells. We show that morphogenetic patterns
such as exponential growth, self-replication process
and annihilation process can be easily realized just by
observing the number of neighbors of each cell. That
means this feat is achieved in a distributed and au-
tonomous way.

1 Introduction

Multicellular organisms usually consist of large
numbers of cells, which are able to shape an organism
by an intricate web of cell-cell interactions, a process
called morphogenesis. As each cell contains the same
genome, morphogenesis relies on autonomous and dis-
tributed processes with no centralized control. Al-
though the elucidation of the molecular details of mor-
phogenesis has made big progress in biology, an overall
picture is still lacking. We hypothesize that morpho-
genesis depends on the following two conditions:

1. Morphogenesis is an autonomous, distributed pro-
cess without any centralized control for all cells.

2. In essence, morphogenesis of living things is basi-
cally understood as expanding and folding sheets.

We used these two conditions as guidelines to screen
the existing literature of morphogenetic models. Alan
Turing’s reaction-diffusion model [1] uses two chemical
substances that are able to produce spatial patterns in
space. The point of this mechanism is that in essence,
reaction-diffusion mechanisms are means of break-
ing the symmetry among homogeneous cells in au-
tonomous and distributed way. Focusing on the form
of gastrointestinal tract, H.Honda advocates that in
general the form of multi cellular system is realized as
two-dimensional sheets rather than three-dimensional

solids [3]. There exist many approaches for morpho-
genesis that can be divided into several types: Linden-
mayer grammars [4], cellular automata [5], [9], concen-
tration gradient[2], mechanical approaches [6], recur-
rent diagram networks to express the bodies of simu-
lated creatures [7], and extended grid space into graph
model [8]. However, little attention has been given to
the characteristics of form - the topology of the cellular
network.

2 Model

In our model, we choose the cell as the level of
abstraction. System consists of cells connecting each
other.

Cells differentiate depending on the number of
neighbors.

Cells divide and die (cell differentiation) depending
on the number of neighbors. This is according to the
fact that one of the possible biological mechanism as-
sumed to code the behavior of morphogenesis would
be the concentration of chemical substances that dif-
fuse into neighboring cells through channels. In other
words, its concentration could reflect the number of
neighbors.

Differentiation rules are applied synchronously.
These cell behavior rules are applied synchronously

in specific order. After specific time passes (100 steps),
all cells count its neighbors and take actions. (The def-
inition of step is prescripted below.) Once cell division
is took place, the cell is divided into four cells. This
is in order to sustain the symmetry of the cell net-
work. In cell deletion, the cell is deleted by cutting
connection to its neighbors.

Cell-cell mechanical interaction
Cells are expressed as mass points. Links between

them are represented as mechanical connections. The
mechanical interactions are expressed as spring and
damper model. Although it takes time to converge to
the form, the form of cell network topology is unique



to each sequence. We show the parameters of the sys-
tem in Table.1. The equation of motion for the cell i
is expressed in eq.1. Where subscript i, j is an identi-
fication number of the cell.

Table 1: Sets of parameters.
Symbol Definition Value
k spring coefficient 50
l spring natural length 50
m mass 10
c damper coefficient 30
g gravity 50
a cross product 2000
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The position of the cell qi is defined as a vector.
The cell that exists in neighbor of cell i is denoted as
j. Gravity is added to the system for z-axis direction
and cross-product force is also added in order to swell
the form of the sheet. The differential equation is inte-
grated by the Euler method (δt = 0.01, 1step=30δt).

Cell connection map is introduced to constrain
the form in ”a sheet”

Since cell reconnection after cell division sustaining
adequate topology is tricky, we introduced cell connec-
tion map, which prescripts relation of cell connection.
Fig.1 shows the example of cell connection map. When
cell is divided, the square corresponding to the cell is
also divided into four small squares. (”a)” and ”c)”
corresponds to ”d)” and ”e)”, respectively). Links are
connected if squares touches other squares through the
edge. As we are interested in how the two-dimensional
sheets expand, the most external cells, which exist at
edge of the connection map, are fixed in the same po-
sition. Due to this settling, the system grows like an
expanding balloon. Although many parameters are
decided arbitrarily, the most important thing here is
that once the feature of the model is decided, the form
converges to unique form.

Form can be evaluated using cell connection
map

Form of living things always relates to its function,
and it plays an important role in the evolutionary pro-
cess. But evaluating form is quite difficult and some-
times tends to be arbitrary. However, if we evaluate
the form by analyzing cell connection map, the whole
cell relations can be detected and estimated easily. We
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Figure 1: Cell reconnection.

introduced fitness value (F), -kind of entropy- which
is prescribed as the follow equation (2), where Si de-
notes the area of each cell in cell connection map with
subscript i as an identification number of the cell.

F = − 1
N

∑
i

log
Si

ST
(2)

We set the area of the whole map 1.0. ST represents
sum of all areas of the cell. We generalized the value
by dividing a number of cells, N. The characteristics
of this fitness value is as follows:

1. The fitness value gets larger when the distribution
of area sizes gets larger.

2. If the sum of areas are same, the larger the num-
ber of cells is, the bigger the value becomes.

3. If cell distribution is same, it doesn’t depend on
its scale. That means that the value doesn’t de-
pend on order of morphogenesis.

3 Simulations and Results

By applying several parameter sets, some funda-
mental morphogenetic process were observed.
Exponential growth

Figure 2 shows the examples of exponential growth
of the system. X-Z side view, X-Y top view, Cell con-
nection map in left to right order. (The magnifier is
changed in each view.) In the left model(seq.A), we
set rule that if the number of neighbor cells is 0,2,4,6,
or 8, the cell is divided, and if the number is more than
10, the cell is deleted. And these rules are applied one
after the other starting with division rule. The fig-
ure shows by only counting the neighbors, the system
can generate bended ”two dimensional” morphological
form from one single cell. In the right model(seq.B),
if the number of neighbor cells is 0,2,4,6, or 8, the cell
is divided, and if the number is 1,3,5,7, or 9, the cell is
deleted. This time division rule is applied twice then



cell deletion rule is applied once starting with division
rule. Judging from the X-Y and X-Z view, the form
generated by the rule seems completely different from
that of seq.A.

seq.A
seq.B

side view top view cell map side view top view cell map

M

Figure 2: Exponential growth sequences A(left) and
B(two left blocks and right).

Self-replication, Annihilation, Stop Growth

Fig.3 shows self-replication process. In this model,
if the number of neighbor cells is 0,2,5,7, or 9, the cell
is divided. And if the number of neighbors is 1,3,4,6,
or 8, the cell is deleted. Each group keeps changing
the number of cells which consist its network one and
four generating new groups. Several model in other
parameters showed annihilation and stop growth be-
haviors. The simplest model of annihilation behavior
can be observed when we set the number of neighbors
0 for cell division and 2 for cell deletion applying divi-
sion rule and deletion rule one after another. And the
simplest growth saturation model can be observed by
settling 0 for cell division and any numbers except for
2 for cell deletion.
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Figure 3: Self-replication.
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Figure 4: Detail of exponential growth sequences B.

4 Discussions

Figure 4 represents the magnification of the part
of cell connection map in Figure 2 (as marked ”M”).
After 16 cells, which are arrayed in square grid appears
(A1 and B1), this part gets rounded (C1). Once this
form is created, all internal cells have four-neighbors
thus keep dividing. And ”big” eight cells surrounding
the cells have more than at least 10cells. Therefore
these cells won’t be divided any more. This is a kind
of ”expanding bag”. And this bag can be seen at other
part of the body (A2,B2,C2, and A3,B3,C3 and so on).
This shows that the system is growing creating many
expanding bags around the body.

Figure 5 represents the same part of cell connection
map under the different condition of cell division and
cell deletion. This time, cell is divided if the num-
ber of neighbor cells is 0,2,6, or 8. Cell is deleted if
it is 1,3,5,7, or 9. Although most of the condition
are the same between seq.A and seq.B, the morpho-
genetic processes are essentially different. See the part
marked ”A”. Once this shape is created, the shape
doesn’t change any more. That means that the num-
ber of cells included in this part doesn’t change. (This



A A

B

B

C

A

B

Figure 5: Detail of exponential growth sequence C.

is seen in other parts of sequences B and C and so
on.) This system keeps generating many ”gnarls” in
different positions. The X-Y view is shown in the same
figure. It can be seen that many gnarls are created in
the form. Sizes of each gnarl are the same.
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Figure 6: Left: Fitness value transition graph. Right:
Number of cells transition graph.

We show the number of cells and fitness value tran-
sition graph in Fig.6 in order to quantify the difference
of the characteristics of these forms between sequence
B and C. In Fig.6 left, the X-axis and Y-axis represents
steps and the number of cells, respectively, comparing
sequence B and C. As the figure shows, the fitness in
seq. B is smaller than that in seq. C although the
number of cells in seq. B is larger than that of seq.
C in each time. This means uniformity of the whole
system of seq.C par cell is larger than that of seq.B.
Hence, it suggests that many kinds of differentiation
rules are not needed in order to get complicated forms.
In other words, sustaining an adequate cell differenti-
ation rule is necessary for the morphogenesis of the
model.

5 Conclusion

These results lead to the following conclusion.

1. Several types of morphogenetic behaviors of
three-dimensional sheets can be realized in au-
tonomous and distributed way - just by counting
the number of neighbors.

2. The form can be quantified easily by evaluating
cell connection map.

Some fundamental morphogenetic behaviors are ob-
served; two types of exponential growth, self-
replication, stop growth and annihilation process.
Those models were sensitive to the cell differentiation
rules, to put it another way, sensitive to the topology
of cell connections. What we intended to show in this
paper is the abundant power of morphogenetic expres-
sion supported by the condition of spatial constraint,
and the possibility that we can evaluate complicate
forms by mapping it into other method, cell connec-
tion map.
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