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Abstract— Self-assembly is a process through which an or-
ganized structure can spontaneously form from simple parts.
Taking inspiration from biological examples of self-assembly,
we designed and built a water-based modular robotic system
consisting of autonomous plastic tiles capable of aggregation
on the surface of water. In this paper, we investigate the effect
of the morphology (here: shape) of the tiles on the yield of
the self-assembly process, that is, on the final amount of the
desired aggregate. We describe experiments done with the
real system as well as with a computer simulation thereof.
We also present results of a mathematical analysis of the
modular system based on chemical rate equations which point
to a power-law relationship between yield rate and shape.
Using the real system, we further demonstrate how through a
single parameter (here: the externally applied electric potential)
it is possible to control the self-assembly of propeller-like
aggregates. Our results seem to provide a starting point (a) for
quantifying the effect of morphology on the yield rates of self-
assembly processes and (b) for assessing the level of modular
autonomy and computational resources required for emergent
functionality to arise.

I. INTRODUCTION

Robots are an indispensable part of current manufacturing
technologies. For macroscopic objects conventional auto-
mated pick-and-place operations are not only economical but
are also reliable, fast, and accurate. Well-known examples
are the construction of cell phones, electronic circuits, and
cars. As the assembled objects grow in complexity and the
employed components become smaller and more delicate,
conventional robots hit a barrier because of their inherent
difficulty in precisely manipulating small-sized parts entail-
ing lower yields and higher fabrication costs. The possibility
of using self-assembly for the fabrication of structures from
given components (potentially with nano- or micrometer
dimensions) has been suggested as a promising and viable
solution to this problem [1]. Self-assembly is ubiquitous and
many fascinating instances exist documenting its power, e.g.,
the formation of molecular crystals, the folding of nucleic
acid, swarm behavior in ants or fish, and the formation of
galaxies. It is plausible to assume that self-assembly can also
lead to innovation in applications such as macro-scale multi-
robot coordination and manufacturing technology for micro-
scale devices.

In the field of modular robotics many attempts have
been made to realize self-assembling and self-reconfigurable
systems. Work has been mainly focused on the design and
construction of basic building blocks of a typically small
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repertoire, with docking interfaces that allow transfer of
mechanical forces and moments, and electrical power, and
that can also be used for communication [2]–[13]. These
robots can rearrange the connectivity of their structural
units to create new topologies to accomplish diverse tasks.
One way to classify current research on modular systems
is according to the amount of planning and determinism
required for generating a structure of interest. If the units
move or are directly manipulated into their target locations
through deliberate active motion, the modular system is ”de-
terministically self-reconfigurable” implying that the exact
location of the unit is known all the time, or can be calculated
at run time.

If the units move around by other means (e.g., by ex-
ploiting surface tension or by taking advantage of Brownian
motion), the system is ”stochastically self-reconfigurable”
implying variable reconfiguration times and uncertainties in
the knowledge of the units’ location (the location is known
exactly only when the unit docks to the main structure).
The advantages of this form of reconfiguration are at least
two-fold: it can be extended to small scales and it alleviates
local power requirements. To date a few self-reconfigurable
modular robots relying on stochastic self-assembly have been
built [14]–[19]. Although in all these systems the units
interact asynchronously and concurrently, a certain amount of
state-based control is still required for the modules to move,
communicate, and dock. To our knowledge there have not yet
been any attempts at exploring stochastic modular systems
where parts have only limited (or no) computational (i.e.
deliberative) abilities.

Such systems, however, are widespread in the biological
world. The formation of the complex symmetrical protein
shells of spherical viruses is a particularly familiar instance
of self-assembly. The shell of the T4 phage, for instance,
is composed of hundreds of parts and it is not plausible to
assume that the instructions for its construction are contained
in the virus’ genetic material. It turns out that the shell
consists of monomers that self-assemble without the need for
a blueprint. Even more surprising, if one mixes the right kind
of proteins the virus can be synthesized in vitro [20]. There
are three basic issues with this picture: (1) although little is
known about the underlying assembly process, the fact that
all viruses adopt similar mechanisms hints at common design
principles suggesting that simplified models (such as the one
presented in this paper) might be helpful in understanding
the process; (2) even for a small virus, there are too many
possible intermediates to allow a complete description of the
assembly process with three independent stages [20]; and
(3) a generalized scheme has to exist to avoid a substantial



degree of incorrect assembly (yield problem).
In this paper we study more carefully the role played by

the morphology (e.g., shape and material properties) of the
individual modules with respect to the yield problem. More
specifically, we use a stochastic modular robot called Tri-
bolon as a tool to investigate this issue. One of the important
aspects of our work is to develop a better formal under-
standing of the general principles underlying self-assembly
as well as the role played by morphology. In the following
section, we first describe our experimental system. Then, in
Section III we report the results of experiments done with the
real system, using a physics-based computer simulation, and
obtained via mathematical analysis. We conclude the paper
in Section IV by first discussing our results and by pointing
to some future work.

II. EXPERIMENTAL SETUP: TRIBOLON

To test our ideas, we used macroscopic modular units
capable of moving on the surface of water. Each module
consisted of a pie-shaped wedge spanning an angle of α =
60 degrees made of durable plastic (acrylnitrile butadene
styrene), a small pager motor (vibrator) positioned on top
of the wedge, as well as a permanent magnet attached to
the module’s bottom surface and oriented orthogonally to
the module’s main axis (Fig. 1a). The magnet was made
of Neodymium and had a surface magnetic flux density of
1.3 T . A pantographic system was used to supply the pager
motor with energy (Fig. 1b). When an electrical potential
was applied to the ceiling plate (made of aluminum), current
flew through the pantograph to the pager motor returning
to ground via electrodes immersed in the water (83.3 g/l
of salt an (electrolyte) were added to the water to make it
conductive). Because we used magnets (and not a mechanical
docking system), we were able to build small and light-
weight modules weighing approximately 2.8 gr covering an
area of 12.25 cm2. A vibrating module is shown in Fig. 1c.
Note that, as depicted in Fig. 1b, the modules can tilt
inducing rather large fluctuations in the current flowing
through the motors.

III. RESULTS

A. Real System

Snapshots taken from three experiments using 6 modules
are visualized in Fig. 2. In each experiment, a different
(constant) electric potential was applied between the ceil-
ing plate and the bottom submersed electrode causing the
Tribolon modules to aggregate in various ways. In the
experiment reproduced in Fig. 2 (bottom), we applied a
potential of E = 7 V . The modules first moved along
random paths vaguely reminiscent of Brownian motion. After
some time (≈ 9 sec), through magnetic attraction, some
of the modules were pulled to each other forming two-
units clusters (X2; here Xi stands for the state of a cluster
consisting of i modules). These clusters further combined to
generate a four-units cluster (X4), then a five-units cluster
(X5), and eventually a six-units cluster (X6) (sequential self-
assembly; Fig.2). Once this final state was reached, the whole
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Fig. 1. Experimental setup. a) Schematic representation of a Tribolon mod-
ule (units: [mm], [degrees]). Each module weighs approximately 2.8 gr
and covers an area of 12.25 cm2. The angle spanned by the circular sector
is α = 60 degrees. b) Illustration of the experimental environment with two
modules. c) Real module.

circular structure started rotating counter-clockwise at an
approximately constant speed (like a rotor or a propeller). A
plausible explanation for this ”higher level functionality” can
be found in the intermittency of the contact of the pantograph
with the aluminum ceiling (due to the stable configuration of
the 6-units cluster on the water surface; see Fig. 1b) which
in turn leads to a pulsed current flow.

In the snapshots reproduced in Fig. 2 (center), the potential
was set to E = 8V . As a result of the higher potential,
the motors vibrated at a higher frequency increasing the
likelihood of segregation of clusters while decreasing the
likelihood of aggregation. Most of the time, all types of
clusters disintegrated shortly after formation, exception made
for the six-units cluster (X6) which, due to its symmetry,
proved to be a stable structure. It is important to note that
the formation of the six-units cluster at T = 98 sec was
accidental (one-shot self-assembly; Fig.2). This tendency,
suppressing intermediate states, is thought to be a potential
solution to the yield problem.

The snapshots in Fig. 2 (top) were obtained by applying
a potential of E = 9V . This potential induced the pager
motors to vibrate even faster making the formation of a six-
units cluster unlikely. In fact, even for prolonged experiments



Sequential self-assembly

E=7V.
The first modules form two-units 
clusters (X2) which eventually 
assemble into a six-units cluster 
(X6). Once this final state was 
reached, the whole circular 
structure rotates counter-clockwise 
at constant speed.

One-shot self-assembly

E=8V.
Most clusters are unstable. The 
six-units cluster (X6), however, is 
a stable symmetric structure.

Random movements

E=9V.
All kinds of clusters are unstable 
and quickly disaggregate. 

Fig. 2. Experimental results. Self-assembly process as a function of the applied electric potential E.

no clusters could be observed (random movements; Fig.2).
We confirmed this result by initializing the experiment with
modules arranged in a circular configuration consisting of
six units (the desired configuration); as expected, the cluster
was unstable and disaggregated shortly after the start of the
experiment.

The problem of producing a desired configuration in large
quantities (while avoiding incorrect assemblies) is known
as the ”yield problem” and has been studied in the context
of biological and nonbiological self-assembly systems [21],
[22]. For example, let us assume that the self-assembly
process is initialized with 12 modules – each one a pie-
shaped wedge spanning 60 degrees – with the objective to
form two complete circles consisting each of 6 modules. In
fact, the likelihood that the system actually settles into the
desired configuration (a circle) is rather low (Fig. 3). An
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Fig. 3. Yield problem and stable clusters. Twelve circular sectors X1

can aggregate into two X6 clusters. In most cases, however, the modules
organize themselves in more than three clusters. The yield in the upper part
of the figure is 100%, the one in the lower part is 0%.

essentially analogous problem is investigated in the context
of DNA folding where one of the objectives is to increase the
yield rates of the self-assembly process [23]. Similarly, a lot

of research effort is being devoted to the development of high
yield procedures for integration and mass manufacturing of
heterogeneous systems via self-assembly of mesoscopic and
macroscopic components [24]–[26].

In order to investigate the interactions among many mod-
ules and to see how changes in the morphology (here: the
angle) of the modules affect the convergence to the desired
state and the yield rate, we conducted a computer simulation
as well as mathematical analysis of the system. In particular,
we focused on the case E = 7V for which in the real system,
few clusters disintegrated after having formed a six-units
aggregate (see dotted box in Fig. 2).

B. Simulated System

The computer simulations were realized using the Ageia
physics engine and the OGRE open source graphics engine 1.
The kinematic and dynamic parameters of the simulations
were tuned manually so that the behavior of the simulated
system matched relatively closely the one observed in the
real system. The obvious advantages of a simulation are the
possibility to explore the interaction between a large number
of modules and the ease with which the morphology of the
modules can be altered.

Snapshots of some of the simulations comprising 100
modules are reproduced in Fig. 4. As can be seen from the
figures, the modules rather quickly aggregate into small-sized
clusters (X2 and X3), and then later merge into bigger and
more stable clusters (X6). Modules in medium-sized clusters

1http://www.ageia.com/, http://www.ogre3d.org/



(X4 and X5) are exposed to less balanced force distributions,
and consequently the formed clusters are most unstable (see
also Fig. 7 d,e). Clusters composed of six units (X6) are
quite stable and the process reaches a yield rate of about
40% (that is, in average 40% of all modules belong to a
six-units cluster). As described in the following section, this
result can be confirmed by mathematical analysis.

60deg

30deg

90deg

120deg

180deg

Fig. 4. Snapshots of computer simulation for modules spanning 30, 60,
90, 120, and 180 degrees.

C. Mathematical Model

We studied the behavior of our self-assembly system using
kinetic rate equations derived from analogy with chemical
kinetics [21]. For the analysis, the quantity of every inter-
mediate product is represented with a state variable. One can
then express the state transitions of the variables as:

2X1 → X2, X1 + X2 → X3,
X1 + X3 → X4, X1 + X4 → X5,
X1 + X5 → X6, 2X2 → X4,
X2 + X3 → X5, X2 + X4 → X6,
2X3 → X6

(1)

where Xi stands for the state of a cluster consisting of i
modules (e.g., two single-unit modules X1 can merge to form
one cluster X2). Our mathematical model assumes that not
more than 2 units can aggregate into a cluster at the same
time. The transition of the state vector x = (x1, . . . , x6)
obeys the following difference equation:

x(t + 1) = x(t) + F (x(t)) (2)

where xi (i = 1, . . . , 6) is the number of clusters consisting
of i units. Here t corresponds to time (more precisely: the
number of collisions between clusters), and F is a transition
function expressed as:

F1(x) = (−2P11x
2
1 − 2P12x1x2 − 2P13x1x3 − 2P14x1x4

− 2P15x1x5)/S2

F2(x) = (P11x
2
1 − 2P12x1x2 − 2P22x

2
2 − 2P23x2x3

− 2P24x2x4)/S2

F3(x) = (2P12x1x2 − 2P13x1x3 − 2P23x2x3 − 2P33x
2
3)/S2

F4(x) = (2P13x1x3 + P22x
2
2 − 2P14x1x4 − 2P24x2x4)/S2

F5(x) = (2P14x1x4 + 2P23x2x3 − 2P15x1x5)/S2

F6(x) = (2P15x1x5 + 2P24x2x4 + P33x
2
3)/S2

(3)

where the probabilities Pij represent the conditional prob-
ability of bonding on the condition that two units i and j
collide. The coefficients are chosen by referring to Eq. 1
and by noting that the coefficient has a positive sign if X i

is a product, and has a negative sign if Xi is a reactant.
The probabilities Pij can be calculated using geometric
considerations. Let us consider the case where two single
units collide with probability P11. We assume that these units
will bond if (a) unit 2 is in the region S1 of unit 1, and (b)
unit 1 is in the region N2 of unit 2 (Fig. 5); i.e., if the
magnetic North pole of unit 2 (area N2) faces the South
pole of unit 1 (area S1) or vice versa. The general equation
is:

Pij =
Si

Si + Ni + Bi
× Sj

Sj + Nj + Bj
× 2

=

{
1

12π (3π − 1.5S − 4a + 2 sina) S ≤ 2(π − a)
1

12π ( sin π
4 ·sina

sin( π
4 −a) − a) S ≥ 2(π − a)

(4)

where S represents the sum of all the angles composing a
cluster, and a = π/4 − arcsin(1/2

√
2).
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Unit2

S1

S

Fig. 5. Geometric relation of units.

Figure 6 displays the change over time of the number
of clusters obtained by solving the system of difference



equations described above with initial condition x(0) =
(100, 0, ..., 0). As can be seen in the figure, X5(t) > X6(t),
which exemplifies the ”yield problem.”
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Figure 7 compares the results of the computer simula-
tion with the ones obtained through mathematical analysis.
Because the correspondence between ”time” in the mathe-
matical analysis and real time is not meaningful, we plotted
the trajectories of the number of four, five and six-units
clusters (X4, X5 and X6) against the number of three-units
clusters (X3). The overall lower count of four-units clusters
is a consequence of the instability of this particular structure.
Any of the two units at the boundary of a four-units cluster
(denoted by a white dot in Fig. 7e) can easily shift towards
the center of the cluster. As soon as the distance between
the two boundary units decreases, the identical polarities
of the magnets will lead to a repulsive force and thus to
a decomposition of the four-units cluster into one unit and a
three-units cluster (Fig. 7d). In a five-units cluster, this sort of
repulsive interaction is not as likely because boundary units
can only rotate (and not shift) hence preserving the balance
of forces (Fig. 7d).

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10

X
6

X3

math
simulation

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10

X
5

X3

math
simulation

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10

X
4

X3

math
simulation

a) b)

c) d)

e)

Fig. 7. Projections of the trajectory of the state variables (a-c) for
mathematical analysis and simulation. Stability and instability of four-units
and five-units clusters (d,e). ”Boundary” units are indicated by white dots.

Figures 8 (a,b) show how shape changes affect the yield

of the self-assembly process. The yield rates are normalized
by multiplying them by the number of units required to
construct a full circle (i.e., in the case of α = 60 degrees
the factor is 6; in the case of α = 180 degrees units the
factor is 2), and plotted as a function of the angle α. As can
be seen in the figure, the yield rate falls off linearly with
the angle. This result can be explained by considering that
the number of clusters required to form the desired structure
is inversely proportional to the angle. An additional point
is that clusters formed by an even number of units show
better yield rates. In Fig. 8 b, we plotted the yield rates on
a logarithmic scale. As expected, the narrower the angle,
the worse is the performance of the system. Interestingly,
the relationship between yield rate and angle follows a
power-law with a scaling exponent of 0.81. Although this
will require additional support, we hypothesize that this
relationship is a result of the shape of the module (in this case
the circular sector with an orthogonally attached magnet).
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IV. DISCUSSION

In this section we discuss some of the main points emerg-
ing from our experiments.

A. Levels of functionality

Let us return to the question formulated in the Introduc-
tion: can we build non-biological (modular) systems that self-
assemble like biological ones? By carefully mapping the in-
teraction networks of the approximately 70 proteins involved
in the assembly of the T4 phage, one can observe that the
aggregation processes are extremely well organized [20]. For
instance, a protein A can only dock on a protein B by first
coupling with a protein C: A+B+C → AC+B → ABC. It
follows that through coupling with protein C, protein A can
acquire a different level of functionality, which then enables
the interaction with protein B. We assume that this kind
of interaction networks can lead to emergence of multiple
levels of functionality which play a crucial role in many
morphogenetic processes. The formation of a propeller-like
rotating aggregate (Fig. 2; E = 7V ) is an instance of what
one might call ”emergent functionality.”

B. Inertial vs viscous world

For objects in water at the mm scale, viscosity is as
important as inertia (the Reynolds number, that is, the ratio
of inertial forces and viscous forces, is ≈ 1). It follows that
objects of 0.1 mm dimensions scale are affected mostly by



viscous forces whereas objects of 1 cm dimensions scale
are affected mostly by inertial forces. For objects on the
order of 1 µ m or less, such as bacteria, diffusion is a more
effective way of locomotion than active propulsion (e.g.,
swimming bacteria are slower than diffusing molecules [27]).
The implication for us is that we need to be careful when
relating our work to small scales. Although at small scales,
it might be possible to observe complete bottom-up self-
assembly this might not be the case at large scales. Further
work will be required to assess how our results can be
mapped to smaller scales.

C. From low autonomy to mid-level autonomy

Focusing on the mechanisms of living things from a
viewpoint of autonomous and distributed systems, it can be
noticed that the components which form the morphology
are not always highly autonomous [28]. Indeed, we could
probably obtain the same results by employing modules
without pager motors, but by supplying power through an
external, rotating magnetic field. The key when we discuss
autonomy of components in the context of autonomous-
distributed systems might not be whether the units are passive
or active, but whether the units are passive or ”reactive.”
By drawing from our current experience in designing, con-
structing and controlling macroscopic modular systems, we
hope that we will be able to derive conclusions about what
the level of autonomy is needed to achieve self-assembly.
One could say that life is a blind engineer, because the
components – e.g., molecules – self-construct into organisms
in a completely bottom-up fashion.

V. CONCLUSION

We proposed a novel type of stochastic modular system
which can be induced to self-assemble through a single
control parameter (externally applied electric potential). Us-
ing a real system, computer simulation, and mathematical
modeling, we studied the effect of the morphology of the
modules on the yield rate of the self-assembly process. Our
results seem to indicate that computational resources can be
traded off by appropriate morphology. We believe that the
technological and conceptual advancements achieved recent
with small-scale modular robots offer new and exciting op-
portunities to deepen both the realization and the theoretical
understanding of scalable self-assembly systems. We hope
that some of the principles discovered (e.g., concerning the
dependence of self-organization on morphology of units) will
also lead to a better understanding of similar processes found
in natural systems.
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