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Abstract— Self-assembly is a process in which individual
components form an organized structure as a consequence of
local interactions. When using magnetics to create interaction
forces, the magnetic flux distribution of a self-assembling system
changes as its assembly state varies. Since Hall effect sensors
are a convenient and effective means to detect changes in the
magnetic field, we explore their applicability to monitoring the
morphology of such magnetically self-assembling systems. We
find that optimal positions for the sensor can be found where the
flux changes maximally. Our analysis is applied to two different
systems by deriving the flux changes for all possible states,
and theoretical flux changes are verified with experiments. In
addition, we show that a small number of sensors is sufficient
for robust state determination. In addition to state detection,
experiments show the potential for angle measurement for
compliant cylindrical magnet joints using a single Hall sensor.

I. INTRODUCTION

Self-assembly is the organization of individual compo-

nents into regular structures without a global control scheme.

Self-assembly occurs from the molecular to the planetary

scale [1], and current research focuses on the creation of self-

replicating, self-organizing, or self-reconfigurable robotic

systems as artifical instantiations of self-assembly [2]–[4].

To study self-assembling systems at the cm scale, it is

convenient to use magnets to provide sufficient interaction

forces and torques, and thus motion, without the need for

additional power. Magnetic interaction has been shown to

scale favorably to the micro and nanodomain, implying that

knowledge gained at the cm-scale will translate well to the

sub-mm domain [5].

The morphology, i.e. the shape, of a magnetically self-

assembled system is not only characterized by its geometrical

boundary, but also by the distribution of the magnetic field—

as the shape of the system changes, so does the magnetic

field distribution. If this change is unique, then knowledge

of the field variation leads to knowledge of the morphology

variation. In this paper, we numerically and experimentally

investigate the existence of such unique mappings for two

different situations: detection of individual self-assembly

states, i.e. online monitoring of the stochastic self-assembly

process, and determination of the relative position of the

modules separated by compliant joints.
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Fig. 1. a) Concept drawing for a swallowable self-assembling modular
robot. b) Snake-type robot with simple prototype modules, which is assem-
bled in a plastic stomach in [6].

Fig. 2. Tribolon system used to study self-assembly at the cm-scale.

In [6], [7] the concept for a swallowable modular robot

for medical interventions was introduced, together with sta-

tistical results on self-assembling cylindrical modules with

different magnet configurations at the ends (see Fig. 1a)).

It was shown that succesful self-assembly can be achieved,

provided that the magnetization of the magnet lies in the

plane of the mating face (MASH-1 configuration). In ad-

dition to the successfully assembled state, locally stable

misaligned states have been identified. In Section III-A we

show numerically and experimentally the existence of a

sensor location enabling identification of each of these states.

In [8], [9] the stochastically self-assembling Tribolon

system was introduced. It consists of triangular modules

floating on water and eventually assembling into a final,

hexagonal configuration (see Fig. 2). The modules feature

one magnet providing the intermodular attraction force, and

a vibration motor generating a random motion component.

The assembly of the final hexagonal configuration is known



to be affected by the so-called yield problem, where clusters

of either 4 or 5 modules cannot attach together and remain

as “garbage” [10]. One proposed solution is implementing

graph grammar rules to the modules, allowing them to

communicate with each other in order to decide whether

they should remain connected or not. [3]. This method

makes the process of assembly into particular morphologies

predictable and programmable. Another solution is based on

low-level control in which case the formation of the clusters

is restricted to a maximum of three modules and only such

clusters can attach to one another. Our goal here is to achieve

this end without the need for intermodular communication.

This requires that the global information of the cluster size

is available to each module locally. In Section III-B we

propose a solution that allows a given module to detect its

state transitions, and thus the size of the cluster it is in, and

demonstrate simple behavior with three modules.

Hall effect sensors are often used to measure magnetic

fields. The main advantage of these devices over, for exam-

ple, optical sensing methods is that they can be completely

sealed and used in harsh environments. Hall sensors are

widely used in position and orientation sensing applications,

and, in this work, we are interested in their applicability to

the detection of self-assembly states. However, preliminary

experiments show that we can also use the same sensors

in a more traditional way, namely as joint-angle sensors

in situations like the one depicted in Fig. 1b), where the

joints between the modules in the snake-type system are

diametrically polarized cylindrical magnets allowing for one

degree of freedom rotation of the modules with respect to

each other [6]. This is discussed in section IV.

II. DETECTING CHANGES IN MAGNETIC FIELDS

The output voltage of the Hall effect sensor we use in

our experiments (A1302 from Allegro Microsystems Inc.)

is proportional to the magnetic flux density across it. In

particular, the change in voltage ΔV is related to the flux

change |ΔB| through the sensitivity S = 13mV/mT of the

sensor as ΔV = S|ΔB|. The Hall sensors are interfaced to a

PC using a National Instruments USB-6008 data acquisition

card and LabView.

We are interested in using as few sensors as possible to

determine the required information. Therefore, we numeri-

cally determine the optimal position of the Hall sensor for a

given problem. This optimal position is characterized by the

largest change in the magnetic flux as the system changes

from one morphology to another and, thus, allows for the

least ambiguous sensing of the state transition.

For the numerical optimization, the magnetic field of

the magnets is computed using the surface charge models

provided in [11] and partially reproduced in the Appendix.

These equations can be used to determine the field of nearby

multipole structures, and are computationally effective as no

discretization of the space is necessary (as opposed to finite-

element-based methods). When the inter-magnet distance is

much larger than the magnet size, a simple point-dipole

model is sufficient.

We begin by a qualitative analysis of the flux change. Let

BS1 and BS2 be the flux distributions of a first shape S1

and a second shape S2, respectively. Then, for an arbitrary

reference frame j

Bj
S1

(xj) =
n∑

i=1

gjiBi(xi) =
n∑

i=1

gjiBi(gijxj), and

Bj
S2

(xj) =
n+m∑
i=1

gjiBi(xi) =
n+m∑
i=1

gjiBi(gijxj)

where xj ∈ R
3 is the point where we are computing the

field, expressed in the frame j, Bi is the field of magnet i
in its own frame i, gji is the homogeneous transformation

from frame i to frame j, with gij = g−1
ji , n is the number of

magnets in the first shape, and m is the number of additional

magnets in the second shape. The flux change at xj follows

as

ΔBj(xj) = Bj
S2

(xj)−Bj
S1

(xj) =
n+m∑

i=n+1

gjiBi(gijxj) (1)

That is, the flux change is simply equal to the flux of

the additionally introduced magnets. In the simplest case

(n = m = 1), B1 is provided by a single magnet on a given

module, and ΔB by a second magnet on another module.

Thus, to optimally detect the presence of the second module

with sensors inside the first module, the position of the

maximal flux due to the second module’s magnet occuring

inside the first module is required. This position is close to

the second magnet as the magnetic flux generally decreases

with distance from a magnet. We conclude that the optimal

position is near the boundary of the first module.

For the numerical analysis, the field equations are imple-

mented in MATLAB and used in the numerical maximization

of the flux change between two morphologies as follows.

We choose j = 1, i.e. we express the fields in the frame

of magnet 1 and omit the superscript from now on. We

identify the different occuring shapes S and derive the

transformations g1i. Then, we use MATLAB’s fmincon to

solve the optimization problem in each component Bi of B

minimize −ΔBi

subject to x ∈ C, (2)

and designate the optimal position as x�, C designates

the feasible region for x�—that is, the region where we

could realistically place a Hall effect sensor. Considering

the individual components in the optimization process, rather

than the norm |ΔB|, also considers situations where B
rotates while its magnitude remains constant. Additionally, if

the optimal position for two components i and j is the same,

an optimal orientation of the Hall sensor can be derived as

θ = arctan(ΔBi/ΔBj).

III. MORPHOLOGY DETECTION

A. Swallowable Modular Robot

Figure 3 shows the observed self-assembly states from [6].

The success rate (‘S’) was found to be > 70% when using



TABLE I

OPTIMAL LOCATIONS AND THE CORRESPONDING MAXIMAL FLUX CHANGES VERSUS THE UNCONNECTED STATE (S1) GIVEN THE HALL EFFECT

SENSOR CAPTURING THE FLUX IN THE PRINCIPLE DIRECTIONS.

State x-direction y-direction z-direction
S2 x� [mm] |ΔBx| [mT] x� [mm] |ΔBy | [mT] x� [mm] |ΔBz | [mT]
S [2.8,-2.0,2.8] 8.6 [0,-1.5,2.4] 35.3 [0,-2.0,0] 27.5
1 [2.1,-2.0,-4.0] 7.2 [0,-2.5,-4.5] 14.9 [0,-2.0,-4.5] 21.1
2 [2.1,-2.0,-4.0] 7.2 [0,-2.5,-4.5] 14.2 [0,-2.0,-4.5] 21.0
3 [-0.7,-2.0,2.2] 1.3 [0.8,-1.5,0.4] 19.7 [0,-2.0,-4.0] 27.5
4 [-3.1,-2.0,3.3] 2.3 [0,-1.5,3.3] 8.3 [0.1,-2.0,0] 7.2

S

a)

b) 35.3 3.9 3.2 30.8 7.7

1 2 3 4

1.4 0.9 0.4 0.3 0.1

Fig. 3. a) Self-assembly states of the abstract swallowable modular robot
system [6]. b) Flux change results for sensors placed at x2

� at each end of
the module (see Fig. 4). Clearly, each state can be identified uniquely.

4×4×2mm3 magnets with Br = 1.4T remanance. Using the

same magnets, we wish to determine how many Hall sensors

are needed as well as their optimal positions to detect each

of these states uniquely.

We consider modules with length 20mm and diameter

10mm with an anti-parallel magnet configuration, i.e. the

magnets on a given module are oriented in opposite direc-

tions as shown in Fig. 3. We define as S1 the unconnected

state (one module with two magnets B1 and B2), and S2

as one of the states in Fig. 3 (one additional module with

magnets B3 and B4). According to (1), the flux change

expressed in the frame of magnet 1 is

ΔB =
4∑

i=3

g1iBi (3)

Let us consider Fig. 4 as an example for S2. The homoge-

neous transformations g13 and g14 are given by

g13 =

⎡
⎢⎢⎣

0
I3×3 0

−L1

01×3 1

⎤
⎥⎥⎦ , g14 =

⎡
⎢⎢⎣
−1 0 0 0
0 1 0 L1

0 0 −1 −L2

0 0 0 1

⎤
⎥⎥⎦ .

The coordinate frames are centered in the magnets’ centers,

such that the magnetization of the magnet is along the

positive z-axis, the y-axis is chosen the same for each magnet

for simplicity, and the x-axis is such that a right-handed

orthonormal base is obtained. Following our argument of the

previous section, the maximal flux change will occur where

magnets 3 and 4 introduce a combined maximal flux into

module 1. We constrain the feasible region to a cylindrical

space behind magnet 1:

C =
{
(x, y, z)

∣∣x2 + z2 − r2 ≤ 0 and a ≤ y ≤ b
}

, (4)
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Fig. 4. Coordinate frames for state 2, a, b, r represent the cylinder in which
we search the optimal location, the distances L1 and L2 are measured from
the magnet center. The hall sensors are shown at x2

� for magnet 1 and its
equivalent position for magnet 2 (see text).

with r = 4.5mm, a = −10mm, b = ymax, and ymax =
−1.5mm when the Hall device is sensing in the y-direction

and ymax = −2.0mm when the sensor measures in the z-

direction—this takes into account the position of the effective

Hall probe inside the SIP-3 package.

The optimal locations x� for each component Bi are

shown in Table I. We observe that in the x-direction the

maximal flux changes are comparatively low. As for x�, two

interesting positions can be identified. First, the success state

is detected best at x� = [0,−1.5, 2.4]mm in the y-direction

or with similar flux change at x� = [0,−2, 0]mm in the

z-direction. Second, the optimal positions when measuring

the flux in the z-direction for states 1–3 are relatively close

together. We conclude from Table I that it is possible to

uniquely detect each occuring state.

However, requiring optimality for each state necessitates

the use of multiple sensors. Since it is desirable to use as

few sensors as possible, we proceed to investigate the flux

change at specific locations based on the previous result:

the absolute best position for detecting the success state

x�
1 = [0,−1.5, 2.4]mm, its symmetrical counterpart x�

2 =
[0,−1.5,−2.4]mm, both measuring the flux in y-direction,

and at x�
3 = [0,−2,−4.5]mm and x�

4 = [0,−2, 4.5]mm,

measuring the flux in z-direction. We conclude from the

results in Table II that each of these positions allows us to

uniquely identify the states. And even though states 1 and 2

show similar flux changes, they are easily distinguished with

a second Hall sensor close to magnet 2, which will already

be available in order to detect the connection states on the

second face.



TABLE II

FLUX CHANGE (IN MT) FOR THE STATES AT x�
1 − x�

4 (SEE TEXT). WE

OBSERVE THAT EACH OF THESE LOCATIONS ALLOWS FOR THE

DISTINCTION OF THE STATES.

States |ΔBy | at x�
1 |ΔBy | at x�

2 |ΔBz | at x�
3 |ΔBz | at x�

4
S 35.3 35.3 5.9 5.9
1 0.9 3.9 21.1 1.5
2 0.2 3.2 21.0 1.6
3 8.6 30.8 26.5 4.5
4 7.7 7.7 0.3 0.3
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Fig. 5. Tribolon modules. a) Photo, b) Employed coordinate frames.

For experimental verification, cylindrical modules were

fabricated by stereolithography and the magnets were glued

into the faces. One Hall sensor was glued behind the mag-

net at x�
2 and connected to the data acquisition system.

The output voltages for each state are recorded and the

difference to the unconnected state is determined. Finally,

we convert the voltage difference to flux change and find

|ΔBy| = {37.6, 5.8, 5.0, 34.1, 14.6}mT for the states S–

4, which corresponds well with the theoretical results in

Table II.

Finally, we compute the flux changes for a potential

application by assuming two hall sensors inside Module 1

at x2
� and the equivalent position for Magnet 2 as shown in

Fig. 4. The results, shown in Fig. 3b), show again that unique

flux changes are obtained, and thus the states are identifiable.

We conclude that a single Hall sensor at each magnet is

sufficient to detect all the occuring states of the self-assembly

process. In addition, equivalent locations exist where an

additional Hall sensor can be used to increase the robustness

of the detection procedure and/or provide design alternatives.

B. Tribolons

Self-assembling systems at the cm scale are typically

considered as distributed systems, implying that there are

uncertainties in the knowledge of the components’ global

information. Due to the lack of a central controlling system to

coordinate and control the modules, each module is required

to possess any necessary information of the global configu-

ration. Fig. 5a) shows the Tribolon modules employed in this

work. The modules are equilateral triangles (see Fig. 5b)),

and the magnet (Br = 1.4T) providing the attraction force

between them is a cube of 5mm sidelength magnetized along

the x-axis (perpendicular to the symmetry axis) and placed

at L = 15mm from the tip of the module.

The morphologies that may occur during the self-assembly

process are depicted in Fig. 6. We wish to determine the
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Fig. 6. Possible morphologies that may occur during the Tribolon self-
assembly process. The nomenclature reflects the number of (L)eft and
(R)ight neighbors of the gray module, and H designates the self-assembled
hexagon.

number and position of the Hall sensors to enable a given

module to sense the size of the cluster it is in, i.e. know

how many left and right neighbors it has. We begin by

determining the optimal position to detect one neighbor—

the situation depicted in Fig. 5b)—and define S1 as the state

without any neighbor, and S2 as the state with one right

neighbor (R). Then,

g12 =

⎡
⎢⎢⎣

1/2 −√3/2 0
√

3L/2√
3/2 1/2 0 L/2
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (5)

With the feasible region C being the whole module 1

except the position of the magnet, and x0 = [4, 4, 0]mm,

we find the optimal position to be at x� = [2.6, 9.8, 0]mm,

which is at the boundary of the module. Also, we find that the

change of both flux components ΔBx and ΔBy is maximal

at this position, therefore, the Hall sensor should be oriented

to capture the flux at the angle arctan (ΔBy/ΔBx) = π/6
(perpendicular to the wall of the module).

We also find that the flux change at the symmetric position

x2
� = [2.6,−9.8, 0] is negligible, therefore, it can be used

to optimally detect a (L)eft neighbour. Thus, we equip

the modules with two Hall sensors at x� and x2
� and

investigate this configuration for its utility in detecting state

transitions. Fig. 7 shows the percentage change in the flux

for both sensors for all possible state transitions (except for

symmetry). We observe that every transition causes a flux

change of at least 1% which can be detected with appropriate

hardware. For robustness of detection, one could implement

the possible transitions onto the module given a certain

cluster size. Then, the number of possibe transitions is greatly

reduced. Either way, we conclude that the information on the

global shape and size of the cluster, as well as the position

of a given module inside this cluster, can be made available

locally on the module.

Experimentally, we investigate the yield problem intro-

duced earlier. To constraint the size of the cluster to three

modules, it is necessary that a given module detects the states

L, R, LL, LR, and RR. To show this, we implemented the

following simple rule on one module: run the vibration motor

as long as the cluster size is 1 or 2, else stop it. Before
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Fig. 7. Flux change (in %) for two optimally positioned Hall sensors on
the gray module (see Fig. 5b)). Each state transition is unique and allows
the gray module to monitor the size of the cluster.

TABLE III

VOLTAGE LIMITS FOR THE DIFFERENT TRIBOLON STATES

Left Sensor Right Sensor
State Vmax Vmin Vmax Vmin

N 0.8 0.7 1.3 1.2
R 0.8 0.728 1.2 0.88
L 0.7 0.45 1.3 1.208
RR 0.8 0.7 0.873 0.85
LL 0.727 0.45 1.208 1.2
RL 0.8 0.43 0.879 0.8

running the experiment we determined the voltage limits of

the Hall sensors for the different states as shown in Table III.

The sensor readout and the motor power supply was passed

from and to the module by means of a cable, and the control

was done in LabView. The other two modules were passive,

i.e. their sensors and motor information was not processed.

Snapshots of typical assembly states are shown in Fig. 8

together with the state of the module (a movie is provided

as supporting material).

a) b)

c) d)

Fig. 8. Example for Tribolon state transition. The inset indicates the state
as seen by the active module during the experiment, and its action: a) no
neighbor: motor running, b) L: motor running, c) RL: motor stopped, d)
LL: motor stopped. (see Fig. 6)
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Fig. 9. Coordinate frames for joint angle measurement.

IV. JOINT ANGLE MEASUREMENT

When the modules assemble into a snake-type structure

such as shown in Fig. 1b), they ideally line up as shown in

Fig. 9, where the cylindrical magnet (magnet 2) is diametri-

cally magnetized (i.e. bipolar cylindrical magnet). Now the

modules can rotate with respect to each other and can, for

example, adapt the shape of the robot to the walls of the

intestine as they are moving through it. In this situation, our

objective is to determine the angle between the modules, i.e.

to use a Hall sensor as a wireless encoder for the passive

cylindrical joint.

In the envisaged application, the cylindrical joint magnet

will be rigidly attached (glued) to a given module, and

allow another module without joint to self-assembe to it.

We neglect the outer magnets 4 and 5, as they are relatively

far away to have influence. We note that as Module 2 rotates

on the cylindrical magnet, the center of rotation moves along

the horizontal y axis. It follows that instead of the desired

joint angle θ, we observe the angle α. Using trigonometric

relationships we can relate α to θ as

θ =
(

1 +
Lm

R

)
α, |θ|, |α| ≤ π

2
(6)

assuming that Lm � R, which holds in our case, as

Lm = 20mm and R = 2mm. Similar to the previous

section, we find the optimal position for various angles θ
as x� = [0,−1.5, z�]mm, where z� is shown in the inset of

Fig. 10. As can be seen, z� is close to zero. For simplicity of

alignment we choose z� = 0mm for the experiment, as now

x� is centered on the surface of the magnet. The optimal

direction of the hall sensor is found to be the y-axis, that

is the sensor should measure the flux perpendicular to the

magnetization of the magnet.

Experimentally, we measure the flux change using a 5◦

angular grid fabricated out of PMMA with a laser mill. We

set the two-module structure at the angles θ ∈ (0◦, 55◦)
while the voltage was recorded. This was repeated six

times. Finally, the difference to the 0◦ position is calcu-

lated. The results are shown in Fig. 10, together with a

sinusoidial fit (ΔV = A sin θ), and a linear fit (ΔV =
Cθ). We find A = 0.1151V with the 95% confidence

interval [0.1139, 0.1164]V, and C = 0.1038V/rad with the
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Fig. 10. Results for angle measurement with two fit functions. The inset
shows the z-coordinate of the optimal location (model and cubic fit). For
simplicity, z� = 0mm is chosen.

confidence interval [0.1019, 0.1057]V/rad. Good agreement

is obtained between the sinusoidial fit and the model where

we find A = 0.130V using the sensor’s sensitivity S =
13mV/mT to convert between voltage and flux change.

We conclude that a single Hall sensor can be used as an

encoder for the angle between two modules. Using θ =
arcsin(ΔV/A), the measurement uncertainty Δθ for the

angle detection can be calculated as

Δθ =
∂θ

∂ΔV
δV =

δV√
A2 −ΔV 2

, (7)

where δV is the noise level of the Hall sensor. In our case

(δV = 0.1mV), this results in Δθ < 1◦.

V. CONCLUSIONS & FUTURE WORK

Based on the premise that the flux distribution of a mag-

netically self-assembling system changes as its geometric

shape changes, we have shown that linear Hall effect sensors

can be used to uniquely identify the current state of the

system. In addition, we have numerically derived optimal

locations and orientations for the sensors for the maximal

flux change. We have also demonstrated the efficiency of

Hall sensors because the number of the necessary sensors

for unique state detection can be very low. Specifically, in

the case of the swallowable modular robot, only one sensor

per magnet is necessary to detect all five occuring states,

and for the Tribolons, only two sensors per module allow

the distinction between sixteen shapes. This enables a given

module to have local information on the global morphology

of the cluster it is in. Finally, we have shown the potential

for joint-angle measurements in self-assembled snake-type

robots using a single Hall sensor, and found that the error

on the measured angle can be as low as 1◦.
In addition to the examples presented in this work, our

methodology is readily extended to virtually any system

undergoing a flux distribution change upon shape change.

APPENDIX

SURFACE CHARGE MODELS

For a rectangular bar magnet with edge coordinates

(x1, x2), (y1, y2), and (z1, z2), and magnetization M =

[0, 0, Ms]T the B-field outside the magnet is given by

Bx(x, y, z) =
μ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m

× ln [F (x, y, z, xm, y1, y2, zk)]

By(x, y, z) =
μ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m

× ln [H(x, y, z, x1, x2, ym, zk)]

Bz(x, y, z) =
μ0Ms

4π

2∑
k=1

2∑
n=1

2∑
m=1

(−1)k+n+m

× arctan
[ (x− xn)(y − ym)

(z − zk)

× g(x, y, z, xn, ym, zk)
]

with the remanence being Br = μ0Ms, and

F =
(y − y1) + [(x− xm)2 + (y − y1)2 + (z − zk)2]1/2

(y − y2) + [(x− xm)2 + (y − y2)2 + (z − zk)2]1/2

H =
(x− x1) + [(x− x1)2 + (y − ym)2 + (z − zk)2]1/2

(x− x2) + [(x− x2)2 + (y − ym)2 + (z − zk)2]1/2

g =
1

[(x− xn)2 + (y − ym)2 + (z − zk)2]1/2

More details on surface charge models can be found in [11].
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