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Abstract

The decay in structure size of manufacturing products has yielded new demands
on spontaneous composition methods. The key for the realization of small-sized
robots lies in how to achieve the efficient assembly sequence in a bottom-up
manner, where most of the parts have only limited (or no) computational (i.e.
deliberative) abilities. In this paper, based on a novel self-assembly platform
consisting of self-propulsive cm-sized modules capable of aggregation on the sur-
face of water, we study the effect of stochasticity and morphology with respect
to the yield of targeted formations in self-assembly processes. Specifically, we
focused on a unique phenomenon that a number of modules instantly compose a
target product without forming intermediate subassemblies, some of which con-
stitute undesired geometrical formations (termed one-shot aggregation). To-
gether with a focus on the role that the morphology (shape) of the modules
plays, we validate the effect of one-shot aggregation with kinetic rate mathe-
matical model. Moreover, we examined the degree of parallelism of the assembly
process, which is an essential factor in self-assembly, but is not systematically
taken into account by existing frameworks.

keywords: self-propulsive self-assembly robot; stochasticity; reverse reaction;
morphology; one-shot aggregation; yield problem; degree of parallelism; dis-
tributed system.

1 Introduction

Manufacturing technologies and industries heavily rely on robots. For macro-
scopic objects industrial robots are not only economical but are also reliable,
fast, and accurate. Such robots, however, hit a barrier – entailing lower yields
and higher fabrication costs – as the assembled objects become smaller/complex,
and the assembly environments become increasingly inaccessible. One potential
solution to this problem is to exploit processes of self-assembly, that is, processes
in which the interaction of pre-existing components leads to organized structures
without human intervention. Such components could be, for instance, identical
mechanical units (modules).
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Laboratory, University of Zurich, Switzerland. miya@ifi.uzh.ch
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Self-assembly is known to be of crucial importance in the biological realm at
all scales. For instance, the formation of the complex symmetrical protein shells
of spherical viruses is a well-studied example of self-assembly. The shell of the T4
bacteriophage (so-called because it infects bacteria) is composed of hundreds of
parts and it is not plausible to assume that the instructions for its construction
are contained only in the genetic material of the virus. The organism consists
of about 70 different kinds of proteins and exploits the metabolism of the host
cell (e.g. E. Coli) to generate the copies of itself (Leiman et al. 2003; Zlotnick
2005). Moreover, it is truly remarkable that if the right kinds of proteins are
mixed, the virus can be synthesized in vitro. Although the discussion of whether
or not viruses are living things has been controversial ever since they were first
discovered, they are generally considered to be non-living entities because they
cannot reproduce without the help of a host organism. As the research outlined
above shows, the rules that govern interactions at a local level are simple; the
interactions of a large number of entities can lead to the emergence of complex
structures through a process of self-assembly.

In order to develop a better formal understanding of the general principles
underlying self-assembly, many attempts have been made to create descriptive
models. Pioneering experiments on artificial self-replication were conducted
by Lionel and Roger Penrose almost 50 years ago (Penrose 1959). They pre-
sented a mechanical model of natural self-replication in a stochastic environ-
ment. Hosokawa’s work (Hosokawa et al. 1994, 1996) in the 1990’s followed
this stream, examining the clustering pattern of passive elements. The group
of Whitesides revealed different types of self-assembly at small scales (Bowden
et al. 1997; Grzybowski et al. 2000, 2003, 2004). Notable ideas about conforma-
tional switch (physics based internal state of a component) were proposed by
Saitou (Saitou 1999).

Recent advances in robotics have highlighted the importance of self-assembly
for building complex objects, aimed at exploiting the obvious advantages of
living organisms. Modular robots – autonomous machines typically consisting of
homogeneous building blocks – promise a viable solution because they have the
ability to be highly versatile. For instance, at least ideally, they can re-configure
and adapt their shape according to a given task-environment. Work has mainly
been focused on the design and construction of the basic building blocks of
a typically small repertoire, with docking interfaces, which allow transfer of
mechanical forces, moments and electrical power, and which can also be used for
data communication (Fukuda and Kawauch 1990; Nakano et al. 1994; Chirikjian
1994; Murata et al. 1994, 1998, 1999; Yim 1994; Kotay et al. 1998; Rus and
Vona 2001; Mondada et al. 2005; Christensen et al. 2007; Castano et al. 2002;
Jorgensen et al. 2004; Zykov et al. 2005).

To date, a few self-reconfigurable modular robots relying on stochastic self-
assembly have been built (White et al. 2004, 2005; Shimizu et al. 2005; Klavins
2007; Bishop et al. 2005; Griffith et al. 2005). Novel applications in the med-
ical field have recently been suggested. Edible “robotic tablets” that assemble
in the stomach (Nagy et al. 2008; Harada et al. 2009), and drug blending in
vivo by autonomous micro sized capsules (Leong et al. 2006) illustrate the po-
tential of stochastic self-assembly robots. The main difference from existing
modular robotics is the way in which the modules are supplied. The robot
or formed cluster waits for a supplemental module to be “delivered” from the
environment, rather than supplying it itself. In all these systems the units in-
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teract asynchronously during their assembly processes and concurrently once
they have aggregated. Nevertheless, a certain amount of state-based control
is still required for the modules to move, communicate, and dock. Generally,
the internal representations of the module’s configurations, such as rewritable
look-up tables, follow the same lines as conventional approaches.

By taking tools and methods from nature, many inroads have already been
made in utilizing self-assembly for the fabrication of structures at molecular
scales (Winfree et al. 1998; Seeman 2003; Mao et al. 2000; Shih et al. 2004;
Rothemund 2006; Yokoyama et al. 2001). These methods are powerful and ef-
fective, especially due to the exploitation of the advantages of small scales, e.g.
the ability to control stochasticity through temperature during mass production
of the assembled units. An essentially analogous problem to the macroscopic
approaches has been investigated in the context of DNA folding where one of
the objectives is to increase the yield of self-assembly processes (Rothemund
2006). Similarly, a lot of research effort is being devoted to the development of
high-yield procedures for integration and mass manufacturing of heterogeneous
systems via self-assembly of mesoscopic and macroscopic components (Boncheva
et al. 2003; Gracias et al. 2000; Wolfe et al. 2003). The disadvantage of such
an approach may be, if anything, that the assembly parts that can be employed
are limited to what naturally exist or are manufacturable at the scale in ques-
tion. In molecular assembly, three conditions are known to be necessary: weak
interaction, thermal agitation, and nucleation. The mechanism behind molecu-
lar assembly is numerous trial and error iterations of the connections until the
strength reaches a sustainable level. This is one of the fundamental differences
from pick-and-place style (deterministic) assembly. Through such a process,
the system gradually shifts to a more energetically stable state. In artificial
self-assembly systems at the macro-scale, compared to molecular assembly, the
frequency of collisions has a practical limit due especially to the inertial effect.

In this paper, motivated by the outstanding potential need for realizing
effective self-assembly system, we set the goal of this study to investigate the
role of stochasticity and morphology on self-assembly and propose the novel
approach that can be used in versatile scales. We made the following set of
prerequisites for establishing the experimental conditions.

1. The system should be “stochastic” and “distributed” with all
components being autonomously assembled in parallel. Small-
scale self-assembly systems that appear in nature, such as molecular reac-
tions, are considered to be distributed systems in stochastic environment,
implying that there are uncertainties in the global information concerning
the components, e.g. locations and total number of modules. Therefore,
the model should be compatible with molecular systems to some degree.

2. The components should have only limited (or no) computational
(decisive) abilities but be self-sufficient. Once a set of experimen-
tal conditions is invoked, modules are expected to act independently (be
untethered), following local causal rules imposed by the environment, in
terms of actuation (self-propulsion) and power.

3. The module architecture should be scalable. Based on the fact
that self-assembly must take place on a small scale in order to achieve
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environmental stochasticity, the module design should be scalable and
simple.

In the following Section 2, we introduce the proposed experimental setup and
describe its behavior. In Section 3, we estimate the convergence of the model
based on kinetic rate calculations. We further examine the observed aggregation
pattern employing the notion of degree of parallelism in Section 4. In Section 5
we present our conclusions.

2 The model: self-propulsive modules

2.1 Modules and experimental setup

The term “self-assembly” implies that the elements or parts involved assemble in
a spontaneous manner without external intervention or control. Such behavior
is typical of dissipative systems. Taking this into account, we chose to produce
a set of modules with different shapes that swarm on water.
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Figure 1: A self-propulsive module. (a) Photographs of an individual module. (b)
Schematic representation of the module (units: [mm]). Each module weighs 2.8 g and
has a footprint of 12.25 cm2.

The modules, which we call Tribolon1, are equipped with a flat coreless vibra-
tion motor (T.P.C DC MOTOR FM34F, 12000 ∼ 14000 rpm (2.5− 3.5 V olts))
on the top of the base plate to allow self-propulsion, and a single permanent
magnet (flux density 1.3 T , 5×5×5 mm3) at the bottom for attractive/repulsive
interactions (Figure 2). This allowed the modules to jiggle and move around in
their environment. The “shape” of the modules can be characterized by a set

1derived from Tribology
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of angles and lengths. However, an inevitable problem which arises is that a
change in one parameter can lead to changes in other parameters, which makes
it difficult to discuss the implications of a single parameter change. Here, in or-
der to minimize this problem, we chose a circular-sector-shaped tiles spanning
an angle α (α = 60◦ in Figure 1). The characteristics of this shape is that it
sustains geometric similarity irrespective to the change of the angle.
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Figure 2: Illustration of the experimental environment with two modules.

As a power supply, rather than using batteries for each module, we opted
to supply electricity through a pantograph that draws current from a metal-
lic ceiling (Figure 2). When an electrical potential is applied to the ceiling
plate, current flows through the pantograph to the vibration motor, returning
to ground via electrodes immersed in the conductive water (salt solution). Due
to this setup, all modules receive the same constant power and they can be
lightweight (2.8 g each), which would not be the case if batteries were used.

The salt solution (83.3 g/l) can generate current flow by the chemical reac-
tions in Eq. (1).

2NaCl + H2O → H2 ↑ +Cl2 ↑ +2NaOH (1)

The concentration of the salt solution is sufficient to sustain current flow during
the entire course of the experiment. In order to avoid chemical deposition onto
the electrodes, we used platinum for the electrode material. The base plate is
made of foam rubber to produce a certain amount of friction. We set a camera
below the tank and observed the modules through the transparent bottom.

2.2 Magnetism

Given N as the number of hard magnets existing in the system, the force (F ij)
and the torque (τ ij) experienced by i-th magnet by interacting with j-th magnet
(i, j ∈N) can be expressed and simplified as:

F ij = μ0

∫
vi

(M i · ∇)Hj dv ≈ μ0vi(M i · ∇)Hj (2)

τ ij = μ0

∫
vi

(M i × Hj) dv ≈ μ0viM i × Hj (3)

where Hj is the magnetic field exerted by j-th magnet, μ0 = 4π×10−7 (Tm/A)
is the permeability of free space, vi and M i are the volume and the magnetiza-
tion of i-th magnet, respectively.
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Figure 3: Schematic of a single module.

m Mass of the eccentric weight
M Mass of the module body
I Moment of inertia around the center of mass
θ Rotational angle of the module

Fω Centripetal force
Fn Frictional force
Fr Resistive force
F f Buoyancy force
Fv Viscous force
g Gravitational acceleration vector
La Amplitude of eccentric mass rotation
Ll Natural length between center of mass and

the ceiling
Lh Radius of the module
Lv Height of the module
Lc Distance between center of mass and center

of vibration motor
Ld Distance between the ceiling and water

The magnetic field created by j-th magnet with respect to the position r
can be described as

Hj(r) =
1

4π|r3|
(3(mj · r)r

|r|2 − mj

)
(4)

where mj = vjM j .
Utilizing H , the total magnetic potential energy of the system (Utotal) can

be described as

Utotal = −μ0

2

N∑
i,j i�=j

∫
v

M i · Hj dv (5)

We normalize the energy as U ′
total ≡ Utotal/(μ0

4π v2M2) assuming all the magnets
are equally magnetized.

2.3 Model of motion

The long range interaction described above is identical for each type of module,
regardless of its shape, because identical magnets were used. However, the short
range interaction, i.e. the final alignment, is dominated by shape and this was
experimentally investigated. For the sake of simplicity, we consider the motion
of a module in two dimensions (Figure 3). Note that the modules could tilt,
inducing rather large fluctuations in the current flowing through the motors.

Let x = [x, z]T be a position vector in a Cartesian coordinate system. Tran-
sitional and rotational motions can then be described by Eq. (6) and Eq. (7),
respectively.

M ẍ = F ω + F r + F f + F n + F v + (M + m)g (6)

Iθ̈ = rω × F ω + rω × mg + rf × F f + rn × F n (7)

where rω, rf , rn, and rv are directional vectors from the center of mass of the
module to the action points F ω, F f , F n, and F v, respectively. Each force can
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be simplified as:

Fω = mLaω
2 cos(ωT + φ) (8)

Fr ≈ −k(
y

cos θ
− Ll) (9)

Fn = μFr cos θ ≈ −μk(y − Ll cos θ) (10)
Ff = −V g (11)
F v ≈ −cẋ (12)

where φ specifies the initial phase of the eccentric mass, V is the volume of foam
rubber that is under water, k is the spring constant of the pantograph, μ is the
kinetic frictional coefficient, T is time, and c is the coefficient of viscosity of the
salt water. What is important here is that the rotational speed of the eccentric
mass is quasi proportional to the voltage applied. As this speed increases, it
leads to faster movement of the modules and stronger collisions between them.
The treatment of the precise motion of a module shall be extended in future
work.

Figure 4 shows snapshots of the characteristic trajectories of two modules
during a 9-sec interval. Module 1 strikes module 2 while being attracted by the
magnetic force between them. It should be noted that due to the rotation of
the eccentric mass, each module repels other modules along a certain direction.
Moreover, because the repulsion force varies, the modules change their relative
positions frequently (illustrated on the right). This is because the repulsion
force between two modules depends on the position of the rotating masses in
each vibration motor as well as on the friction of the rubber foam.

Module 1

Module 2

direction of eccentric 
 mass movement

0 sec

0 sec
9 sec

Figure 4: Trajectories of two modules during a 9-sec interval. Module 1 strikes
module 2 while being attracted by the magnetic force between them. The illustration
on the right shows that the relative positions of these two modules are unstable,
depending strongly on the friction of the form rubber.

2.4 Aggregation behaviors

Snapshots taken during three experiments using 6 modules are shown in Figure 5
(see Extension 1). In each experiment, a different electric potential was applied
between the ceiling plate and the immersed electrode causing the modules to
aggregate in different ways.

In the experiment shown in Figure 5 (a), we applied a potential of E = 7V .
The modules first moved along random paths in a manner vaguely reminiscent
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of Brownian motion. After some time (≈ 9 sec), due to the magnetic attrac-
tion, some of the modules were pulled together forming 2-clusters (denoted by
X2; Xk designates a cluster consisting of k modules). These clusters further
combined to generate a 4-cluster (X4), then a 5-cluster (X5), and eventually
a 6-cluster (X6) (sequential aggregation). Once this final state was reached,
the entire circular structure started to reform a propeller-like structure sliding
the relative positions. This is due to the stability of the configuration when
all remaining spaces were occupied by modules, which induced constant repul-
sive forces among them (note that each module repels its neighbor in the same
direction, see Figure 4). Subsequently, this stable configuration causes synchro-
nized contact of the pantographs to the ceiling, leading to a pulsed current flow.
Consequently, the 6-cluster underwent a rotational movement.

In the snapshots reproduced in Figure 5 (b), the potential was set to E = 8V .
As a result of the higher potential, the motors vibrated at a higher frequency,
increasing the likelihood of breakup of clusters. Most of the time, all cluster
types disintegrated shortly after formation, except for the 6-cluster (X6) which,
due to its symmetry, proved to be a stable structure. It is important to note
that the formation of the 6-cluster at 98 sec was accidental (here termed “one-
shot aggregation”). This tendency of suppressing intermediate states is thought
to be a potential solution to the yield problem (see Section 2.5). In Section 3,
we focus on the characteristics of these two aggregation patterns and compare
the results of numerical simulations.

The snapshots in Figure 5 (c) were obtained at a potential of E = 9V , which
induced such rapid vibration that the formation of a 6-cluster became unlikely.
In fact, even over prolonged experimental observation, no stable cluster was
observed (random movements).

The experimental setup had a deficiency in keeping up the vibration motors
speed at a high voltage (8− 9V ) for a long time because of self-generated heat.
We confirmed these results by checking the stability of the circular configura-
tions shown in (b) and (c) by performing 10 trials, each time initializing the
experiment with 6 modules arranged in a circular configuration (the desired
configuration). It was confirmed in all the cases that while at 8V , the circular
configuration remained stable, it broke up at 9V . Considering that the tendency
of segregations between two modules rises along with higher voltage supply, the
described results seem probable. We further investigate this issue by modeling
mathematical kinetic rate model in Section 3.

2.5 Yield problem

The problem of producing a desired configuration in large quantities (while
avoiding incorrect assemblies) is known as the yield problem and has been stud-
ied in the context of biological and non-biological self-assembly systems (Hosokawa
et al. 1994, 1996). As an example, let us assume that the self-assembly process
is initialized with 7 modules. In fact, the likelihood that the system actually
settles into the desired configuration (e.g. a circle) is rather low, and it is more
likely that the kind of patterns shown in Figure 6 will occur. In this respect,
suppressing the probability of producing stable intermediate states may help in
reducing the occurrence of this problem, as is the case in Figure 5 b. We further
investigate this issue in Section 3.
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a) Sequential aggregation (E=7V).

b) One-shot aggregation (E=8V).

c) Random movements (E=9V).
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Figure 5: Experimental results. Self-assembly process as a function of applied electric
potential E. (a) E = 7V , sequential aggregation. (b) E = 8V , “One-shot aggrega-
tion”. (c) E = 9V , random movements. We checked the stability of the circular
configurations shown in (b) and (c) by performing 10 trials beginning with circular
configurations. It was observed that at 8V , the circular configuration were stable,
while it broke up at 9V (see Extension 1).

3 Chemical kinetic rate model

In order to quantitatively investigate the formation and stability of self-assembled
circular-sector-shaped modules, a mathematical model was developed based on
kinetic rate equations (Hosokawa et al. 1994; Gillespie 2007; Matthey et al. 2009;
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Figure 6: Yield problem and stable clusters. 7 circular sectors are placed in the
arena. In most cases, however, the modules organize themselves in two clusters (cf.
Section 4).

Mermoud et al. 2009). We employ the model to specifically study the global
change of assembly patterns where a vast number of modules reside together,
which is difficult to deal with in a real experiment. In this section, we call the
conditions which correspond to the phenomena observed in Figure 5 a, b, (volt-
ages of 7V and 8V ) “sequential aggregation” and “one-shot aggregation”. The
difference between them is that in the sequential aggregation process, a module
should maintain its connection to a neighboring module once it has attached to
it, while in the one-shot aggregation process, a single module may also disag-
gregate from a cluster at a constant speed (except for the stable configuration
X6, shown in Figure 5).

For the analysis, the intermediate products are represented by state vari-
ables. One can express the state transitions of the clusters as:

2X1 � X2, X1 + X2 � X3, X1 + X3 � X4,
X1 + X4 � X5, X1 + X5 → X6, 2X2 → X4,
X2 + X3 → X5, X2 + X4 → X6, 2X3 → X6 (13)

where Xk stands for the state of a cluster consisting of k(∈ 1, ..., 6) modules (e.g.
two single modules X1 can merge to form one cluster X2). Reversible reactions
are only possible in case of the one-shot aggregation. Note that we defined the
transitions 2X2 → X4 and X2 + X3 → X5 to be irreversible, and X6 to be the
final state, since we seldom observed such disassembly in the experiments. The
robustness of these clusters is mainly due to the geometrical stability of these
configurations.

The transition of the state vector x = (x1, . . . , x6), in which xk denotes
the average number of clusters consisting of k modules, obeys the following
difference equation if x is large enough:

x(t + 1) = x(t) + F (x(t)) (14)

where t corresponds to the number of time steps, or more precisely, to the
number of collisions between clusters. Fk is a transition function expressed as
the sum of the products of (i) the collision probability P c

ij (i, j ∈ 1, ..., 6), the
bonding probability P b

ij , and the stoichiometric number νij and (ii) the sum of
the products of the disassembly probability P d

i′ and stoichiometric number ν′
i′ ,
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namely:

Fk(x) =
∑
i,j

νijP
c
ijP

b
ij +

∑
i′

ν′
i′P

d
i′xi′ , (15)

where the stoichiometric numbers νij (assembly) and ν′
i′ (disassembly) are co-

efficients of the reaction seen in Eq. (13). The subscripts i and j in νij denote
the size of the two clusters assembling, and in ν′

i′ the size of the disassembling
cluster. The stoichiometric numbers correspond to the number of modules that
make up the colliding clusters, and they have a positive sign if Xk is a product,
and a negative sign if Xk is a reactant. Note that we are only interested in indi-
vidual collision events. The model ignores the specific positions of the modules,
assuming a well-mixed system.

The collision probability P c
ij can be represented by Eq. (16), assuming that

two clusters Xi and Xj are picked randomly in each time step (Hosokawa et al.
1994).

P c
ij =

{
2xixj/(

∑
k xk)2 (i 	= j)

x2
i /(

∑
k xk)2 (i = j).

(16)

In Figure 7, two configurations consisting of circular-sector modules are
shown. Here, Sk and Mk represent regions of the plane, and α, β, and γ
represent angles in radians.

Sk(North)

N
SN

S

N
S

N
S

N
S N

S

Sk(South)

Mk

Xk  (k      2 ) Xk  (k > 2   / )

Sk(North) Sk(South)
a) b)

Figure 7: Two configurations consisting of circular-sector modules. α, β, and γ spec-
ify the corresponding angles, and Sk(North), Sk(South), and Mk denote the specific
regions referred to in Eq. (17). (a) The size of cluster is less than a half circle. (b)
The size of cluster is more than a half circle.

Considering the geometric coordination, the conditional probability of bond-
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ing when two modules Xi and Xj collide is given by

P b
ij = P ((Xj in Si(South)) ∩ (Xi in (Sj(North) ∪ Mj))) · 2

+P ((Xj in Mi) ∩ (Xi in (Sj(North) ∪ Sj(South) ∪ Mj)))

=
{

γi

2π · βj+γj

2π · 2 + βi

2π · βj+2γj

2π (i + j ≤ 2π
α )

0 (i + j > 2π
α )

where

β =
{

α + (k − 2)α (k ≤ π
α )

0 (k > π
α )

γ =
{

π + (1
2 − k)α (k ≤ π

α )
(2π − kα)/2 (k > π

α )
(17)

and k represents the number of modules contained in the cluster. We assume
that these modules will bond if (i) Xi is in the region Sj(South) of Xj , and (ii)
Xj is in the region Si(North) of Xi; i.e., if the magnetic north pole of module
2 (area N2) faces the south pole of module 1 (area S1) or vice versa.

P d is set to zero for the case of sequential aggregation. In one-shot ag-
gregation, we arrive at P d using a model similar to the law of mass action
used to describe chemical reactions. With the equilibrium constant K of the
reaction Xi + Xj � Xi+j being given by K = k+/k−, k+ and k− can be inter-
preted as the probability of bond formation and disassembly, respectively. With
the bonding probability P̂ b set to the average of

∑
j P b

1,j , K can be written as
K = P̂ b/P d = exp(−ΔU ′

ρv2 ), where ΔU ′ is the energy of the bond formed between
two modules. This means K grows exponentially with the bonding energy di-
vided by the system’s kinetic energy (Mermoud et al. 2009). We set this bond
strength to be the normalized magnetic potential energy of a 2-cluster X2 cal-
culated with Eq. (5). ρv2 is the mean energy of all the modules in our system,
which have a Brownian-like motion. Since we cannot derive the total kinetic
energy of the system, we set ρ to be a constant with units of s2/m5 and v2 to
have a value proportional to the systems’ agitation. This leads to the probabil-
ity of disassembly of a bond in the next time step to be P d = P̂ bexp(ΔU ′

ρv2 ). For
further calculations we set ρ = 1 s2/m5 and v = 0.0232 m/s (the mean velocity
of the modules in our system). The disaggregation is set to occur in propor-
tion to the number of each cluster. Taking the geometric configurations of each
cluster into account, we set P d

2 = P d, since there is only one bond that can be
dissolved. We set P d

1 = P d
6 = 0, since the modules do not disassemble. For X3

to X5 clusters, we consider the leftmost or the rightmost module leaving the
cluster (see Figure 7 (b)). Therefore we double the coefficient, namely setting
P d

3 = P d
4 = P d

5 = 2P d.
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Finally we obtain Fk as:

F1(x) = {−2P b
11x

2
1 − 2P b

12x1x2 − 2P b
13x1x3 − 2P b

14x1x4 − 2P b
15x1x5

+2P d
2 x2 + P d

3 x3 + P d
4 x4 + P d

5 x5}/(
∑

k

xk)2

F2(x) = {P b
11x

2
1 − 2P b

12x1x2 − 2P b
22x

2
2 − 2P b

23x2x3 − 2P b
24x2x4

−P d
2 x2 + P d

3 x3}/(
∑

k

xk)2

F3(x) = {2P b
12x1x2 − 2P b

13x1x3 − 2P b
23x2x3 − 2P b

33x
2
3

−P d
3 x3 + P d

4 x4}/(
∑

k

xk)2

F4(x) = {2P b
13x1x3 + P b

22x
2
2 − 2P b

14x1x4 − 2P b
24x2x4

−P d
4 x4 + P d

5 x5}/(
∑

k

xk)2

F5(x) = {2P b
14x1x4 + 2P b
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∑
k

xk)2

F6(x) = {2P b
15x1x5 + 2P b

24x2x4 + P b
33x

2
3}/(

∑
k

xk)2. (18)

3.1 Time evolution

Figure 8 shows the change over time of the yield of clusters, obtained by solving
the system of difference equations described above with the initial condition
x(0) = (100, 0, ..., 0). It shows the time evolution of the yield for the cases
of sequential aggregation (a) and one-shot aggregation (b). In Figure 8 (a),
only 38.9 % of modules aggregate into full 6-clusters, which exemplifies the
yield problem. Also, since there is no means for the system to disaggregate, it
becomes almost stagnant after a certain number of interactions, that is, only a
few modules continue the assembly process. However, in Figure 8 (b), 99.0 %
of modules aggregate to form 6-clusters. Note that the one shot self-assembly
shown in (b) takes much longer to reach a stable state than the sequential
aggregation in (a). In our calculations, increase of yields are observable when
the probability of disaggregation P d is in the range from 1.0×10−8 to 5.0×10−2.
In Figure 8 (c) and (d), we plot the trajectories of the time evolution of each
cluster, where both the x and y axes represent yields (sequential aggregation
model in (c) and one-shot aggregation model in (d)). In Figure 8 (c), we see
that clusters consisting of 3, 4, and 5 modules are temporarily formed and
subsequently decrease in number by converting to larger-sized clusters. The
convergence in the values represented in (c) denotes yield problem (indicated
with *). In Figure 8 (d), we see the convergence of all the intermediate states
and the growth of the number of 6-clusters2. In Figure 8 (e), we compare the
transition of the yield for the two conditions, where the improvement in yield
is clearly shown.

2In the mathematical model, we did not consider the “bank-effect”, in which many modules
become stuck together on a wall and stop their dynamical motion.
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Figure 8: Change over time of the yield of clusters obtained by solving the model
with the initial condition x(0) = (100, 0, ..., 0). (a, b) Time evolution of the yield for
sequential aggregation (a) and one-shot aggregation (b). (c, d) Trajectories of time
evolution of each cluster for sequential aggregation (c) and one-shot aggregation (d).
(e) Comparison of the transition of yield under the two conditions. The convergence
in the values represented in (c) denote yield problem (indicated with *).

The mechanism of one-shot aggregation is illustrated in Figure 9 (b), in con-
trast to sequential aggregation shown in Figure 9 (a). The core of one-shot
aggregation is that the system happens to have a chance to configure a targeted
formation (product) with a small probability, while processing reactions com-
bined with aggregations and disaggregations. Also the condition that a product
is more structurally stable than the other configurations must be met. We call it
“one-shot aggregation” for the sake of easy understanding of the phenomenon.
Note that we are fully aware of the fact that reverse reactions assisting in the
growth of yield of a product can be frequently observed in chemistry. Our
contribution is that we demonstrated the concept using a macroscopic physical
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model.
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a) sequential aggregation 
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targeted product

Figure 9: Mechanisms of aggregation. (a) Sequential aggregation leading to the yield
problem. (b) One-shot aggregation leading to the increase of the targeted product.

The voltage (V ) applied to the ceiling determines the level of perturbation
introduced into the system. Thus it can be regarded as a kind of temperature
(T ) which is often employed as a control parameter in molecular self-assembly.
The experimental results obtained show different voltages lead to different ag-
gregation patterns. Moreover, by applying a large perturbation (e.g. 9V ), the
system returns to its initial state, guaranteeing the reversibility of the reaction,
which is a desirable property of our system. It allows the system to disaggregate
undesired intermediate sub-assemblies.

3.2 Effect of morphology

In order to understand how the morphological properties of the modules influ-
ence the final state, we studied the stability of different configurations from the
perspective of the magnetic potential energy. In Figure 10, we plot the nor-
malized potential energy (U ′

total) as a function of the position of the magnet in
the module. In this case, we moved the magnet along the symmetry axis of the
module and measured its distance to the vertex (a). The figure suggests that
shifting the position of the magnet closer to the rounded edge causes the system
to produce dimers (2-clusters) with the rounded edges touching (from Figure 10,
the limit is a ≈ 34 × 10−3 m). In our experiments, a = 25 × 10−3 m, which
implies that the full circle cluster has minimal energy3. For reference, we also
considered the case of a triangle configuration which was observed occasionally.
The calculations confirmed that this is a rarely produced configuration.

Figure 11 shows how the change of the spanning angle of the corner affects
the yield of the self-assembly process in sequential aggregation. The yields are

3This example seems to indicate that it is also possible to perceive this change not as a
shift in the position of the magnet, but rather as a change in the entire mass distribution
(morphology) from the “force source” (here: magnets).
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Figure 10: Potential energy of each configuration (full circle, 3 dimers, and triangular
configuration) with respect to the distance of the magnet from the corner.

normalized by multiplying them by the number of modules required to construct
a full circle (i.e., in the case of α = 60◦ the factor is 6; in the case of α = 180◦

the factor is 2), and plotted as a function of the angle α on a logarithmic scale.
As can be seen in the figure, the narrower the angle becomes, the worse is
the performance of the system. This result can be explained by considering
that the number of clusters required to form the desired structure is inversely
proportional to the angle. Interestingly, the relationship between yield and angle
follows a power-law with a scaling exponent of 0.82. That is, the improvement
of the yield saturates as the angle becomes wider. This result indicates that

y   1.35x0.82

 10

 100

 10  100
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d 
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Figure 11: Yields as a function of the angle spanned by the circular-sector module in
sequential aggregation. The relationship between yield and angle follows a power-law
with a scaling exponent of 0.82.

there exists an optimal spanning angle for which both the aggregation rate and
the number of identical modules can be maximized4.

4In our circular-sector model, we considered the angle α to be an adequate parameter to
measure the heterogeneity of the system. Although the 60◦ and 120◦ modules should be
treated as different (heterogeneous) modules, once two 60◦ modules connect, a 120◦ module
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4 Degree of parallelism

In a manufacturing process, the increase of yield is a critical factor in enhancing
productivity and efficiency. As we will show in this section, the degree of paral-
lelism can have a strong influence on the self-assembly processes. We introduce
this quantitative measure to investigate the pattern of self-assembly focusing
in particular on combinatorial matching patterns. The idea is to focus only on
connections between components (neglecting the identity of each component),
and to acquire information about the compounds. We now define the following
variables:

xi number of connections within the i-th cluster
xcomp number of connections in a complete cluster
X number of all connections (≡ ∑

i xi)
Xcomp number of connections within the complete configuration of clusters

(≡ ∑
xcomp)

To measure the geometrical connections of the modules, we define the local
and global clustering degrees as:

Local clustering degree of i-th cluster ci ≡ xi

xcomp

Global clustering degree C ≡ X
Xcomp

.

Note that C 	= ci in general (see Figure 12). This measure allows us to charac-
terize geometric topologies independent of the energy.

The degree of parallelism (DOP) H , as a function of the local clustering
degrees (ci), is used to quantify the aggregation paths (Miyashita et al. 2009),
namely:

H = −
N∑

i=1

ci ln ci. (19)

Suppose that there exists a number N of clusters. From Shannon’s lemma,
it follows that the value H becomes maximum when the N clusters are all of
the same size, namely:

H(X) = −
N∑

i=1

ci ln ci

≤ −
N∑

i=1

{ 1
xcomp

· X

N
} ln{ 1

xcomp
· X

N
}

= − X

xcomp
ln{ 1

xcomp
· X

N
}. (20)

The upper limit in Eq. (20), i.e. the maximal value for H, is obtained when
ci = { X

xcomp
· 1

N } for ∀ i, that is, when there are equal numbers of clusters of the

forms, which is obviously equivalent to a 120◦ module. This example tells us that the concepts
“homogeneous” and “heterogeneous” cannot be separated from the context in which they are
used.
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same size. This characteristic can be extended to general assembly processes,
irrespective of the number of tiles or clusters.

The whole aggregation sequence can be quantified by the area covered by
the DOP transition, namely:

Hpath =
∫

C

H dC. (21)

Figure 12 shows examples of clustering degrees with 6 modules in (a), and 12
modules in (b). The DOP of their intermediate states (left sides) are H = 0.6452
in (a), and H = 1.2904 in (b). Note that the DOP increases proportionately
with the number of identical clusters. The concept can be extended and applied
to assembly processes in general.

x1=1
c1=1/6

X=4, C=4/6=0.67, H=0.6452 X=6, C=1, H=0

x2=3
c2=3/6

x=6
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X=12, C=1, H=0X=8, C=8/12=0.67, H=1.2904 
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Figure 12: Examples of clustering degrees with 6 modules (a), and 12 modules
(b). The DOP of their intermediate states (left sides) are H = 0.6452 in (a), and
H = 1.2904 in (b). Note that DOP increases proportionately with the number of
identical clusters.

4.1 The case of 6 modules

In Figure 13, the DOP as a function of the global clustering degree C is shown for
the case of 6 modules. Considering the combination patterns, the probabilities
of each transition are calculated and listed inside each path. The value P
represents the probability of a state within the same C. For reference, the
magnetic potential energies U are listed above each state.

The figure shows that as C increases, the DOP H increases, attaining a
maximum for C = 0.5, and then decreasing to 0 for C = 1. Also, in each
column (that is, within a group having the same number of connections), the
more similar the clusters, the higher the DOP. In other words, high values
are derived from states in which the connections are equally distributed. The
highest DOP path (Hpath), which goes through a state with H = 0.8959, has
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Figure 13: Change in DOP as a function of global clustering degree (6 modules). The
more that assembly proceeds in parallel, the larger the value becomes. Note that the
possible number of paths is 17 (without considering disassembly), and the reactions
always produce a full circle (the final state is indicated with **).

a value of 0.461, while the lowest DOP path has a value of 0.236 (which goes
through a state with the lowest H). Note that the possible number of paths is
17 (neglecting disassembly), and the reactions always produce a full circle (the
final state is marked with a square).

4.2 The case of 7 modules

Conversely, the change in DOP for the case of 7 modules is shown in Figure 14.
Surprisingly, the probability of configuring a full circle drops to 1/3 (the three
possible final states are marked with squares). Other configurations with 4 + 3
clusters and 5+2 clusters are calculated to both occur with a probability of 1/3.
This is a typical illustration of the yield problem associated with self-assembly
processes. Here the total number of paths is 25, if we neglect disassembly.

5 Conclusion

This work showed an influence of reverse reactions on the improvement of yields
of targeted products of stochastic self-assembly. By using a platform designed
for the analysis of self-assembly systems, we observed a unique aggregation
pattern at a specific stochasticity level - a number of modules instantly composed
a product while avoiding converging to undesired geometric configurations. We
hypothesized that this is mainly due to the disaggregation (reverse reaction) of
undesired configurations that block the system, re-enabling modules to compose
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Figure 14: Change in DOP as a function of global clustering degree (7 modules).
The probability of configuring a full circle drops to 1/3 (the three possible final states
are indicated with **).

a product at a certain probability. We investigated the model using kinetic rate
calculations and validated the hypothesis. In this regard, the discussion of the
yield problem from a combinatorial perspective in Section 4 clearly depicts the
causal reason. We believe this paper projects an insight on the macroscopic
frame of chemical systems, and deepens the theoretical understanding to realize
high efficient self-assembly robotic systems.
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Appendix A: Index to Multimedia Extensions

The multimedia extension to this article is at: http://www.ijrr.org.

Extension Media Type Description
1 Video Self-assembly processes shown in Figure 5
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