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Abstract— This paper presents an end-to-end approach for
creating 3D shapes by self-folding planar sheets activated by
uniform heating. These shapes can be used as the mechanical
bodies of robots. The input to this process is a 3D geometry
(e.g. an OBJ file). The output is a physical object with the
specified geometry. We describe an algorithm pipeline that
(1) identifies the overall geometry of the input, (2) computes
a crease pattern that causes the sheet to self-fold into the
desired 3D geometry when activated by uniform heating, (3)
automatically generates the design of a 2D sheet with the desired
pattern and (4) automatically generates the design files required
to fabricate the 2D structure. We demonstrate these algorithms
by applying them to complex 3D shapes, and experimentally
demonstrate the fabrication of a self-folding object with 50 faces
from automatically generated design files.

I. INTRODUCTION

In this paper, we develop an approach for the automatic
creation of self-folded objects given a 3D geometric speci-
fication using print-and-fold processes. We have previously
demonstrated the ability to accurately control the fold an-
gle during uniform heating [1], [2]. In this prior work,
we considered defined shape memory laminate geometries
capable of achieving target fold angles and demonstrated
the self-folding of cylinders and regular polyhedra. In this
paper, we generalize these results by showing that we can
automatically generate the crease patterns and manufacturing
files necessary to self-fold an arbitrary 3D geometry.

We examine this problem in two steps. First, we develop
a suite of algorithms that start with the desired 3D geometry
and automatically generate (1) the geometry of its corre-
sponding 2D sheet, (2) the crease structure required to realize
the 3D folded shape from the 2D sheet, (3) the mechanical
design of a heat-activated self-folding device using the previ-
ously described edge folding angle control strategy [1], [2].
In the second step, we automatically generate the fabrication
files required to produce and fabricate the device.

Just as an origami crease pattern contains the informa-
tion required to produce a folded origami object, a self-
folding sheet design contains information for automatically
fabricating an object when subjected to uniform heating. We
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Fig. 1. Self-folding Egg. (Top-left) Input 3D graphic model. (Top-right)
3D self-folded structure. (Bottom) Frames from experiment of self-folding
by uniform heating. The time elapsed since exposure to uniform heating is
indicated in the lower-right corner of each frame (in minutes and seconds).

define these designs as a set of machine codes and develop a
design algorithm for compiling an input 3D surface structure
into its correlated mechanical design (Fig. 2). The design is
composed of the graphic image of each layer. By printing (or
cutting) and composing the layers of the output design, we
build a self-folding sheet with embedded control program.
Fig. 1 shows a self-folding egg made from a 3D computer
graphic model.

We describe and analyze the self-folding models and the
design algorithm in Sec. II, III. We explore the implemen-
tation of the algorithm and the actuation model in Sec.
IV. Finally we demonstrate the experiments with three self-
folding 3D structures in Sec. V. We discuss the conclusion
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Fig. 2. Visual overview of the self-folding sheet development pipeline. The bottom line shows the data transformation to develop a self-folding egg.

and future works in Sec. VI.

A. Related Works

This paper builds on prior work in self-folding, compu-
tational origami and modular robots. Our previous work on
creating self-folding devices controlled its actuators with an
internal control system is described in [3]. In [4], [5] we
discussed how to plan and program this type of self-folding
sheets. [6], [7], [8], [9], [10], [11], [12] present other folding
actuators and folding sensors controlled by internal electronic
circuits.

Recently, various self-folding actuators triggered by ex-
ternal energy sources, such as heat [1], [2], light [13],
or microwave [14], in both macro-scales and micro-scales
[15] have been introduced. Since these types of actuators
are activated by uniform external energy sources, a sheet
containing these actuators does not require an internal control
system. This simplifies the sheet design with respect to
previous self-folding sheets [1], [2]. However, the automated
design and control of these self-folding sheets arise as new
challenges. We address these challenges with an algorithmic
solution.

Previous work has addressed the generation of self-folding
2D DNA structures by controlling chemical bonding of
DNAs (1D strings) without internal control systems [16].
By contrast, we construct 3D structures with 2D sheets
composed of a few simple materials cut into geometries
containing the self-folding information.

Theoretical work in computational origami and geometry
has described various crease patterns for developing 2D/3D
structures [17], [18], [19], [20], [21], [22] and robots [3],
[23], [24], [4]. [25] describes a fabrication process of 3D
micro-structures using manual folding.
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Model of Printable Self‐Folding Sheet

Fig. 3. Visualized self-folding crease pattern representing Egg. The solid
lines are cuts and the dash lines are hinges. Each edge contains a fold angle.

Self-folding systems can be considered a new family of
modular systems, with tiles and hinges treated as basic
modules (see [26] for a review of modular robotics). [27]
proposes a programming method for self-folding systems,
which they treat as many tiny cells that are smaller than the
thickness of a sheet of paper. Each tiny cell is able to process
a program, communicate to the other cells, and make small
folding angles according to a given program. By contrast,
the control information for the self-folding sheet described
here is encoded in the design itself.

II. PROBLEM FORMULATION

A. Self-Folding Sheets Activated by Uniform Heating

A self-folding sheet is defined as a crease pattern com-
posed of cuts and folding edges (hinges) as shown in Fig 3.
A shape memory polymer (SMP) actuator is located along
each folding edge of the sheet, and its fold angle is encoded
by the geometry of the rigid material located at the edge. The
fold angle is encoded in the design of each actuator. When
uniform heat is applied to the sheet, all actuators fold their
edges to their predefined fold angles simultaneously. Our
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Fig. 4. Sandwiched actuator model. (Left) before activate. (right) after
shrinking. The arrows show the shrinking directions.
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Fig. 5. Two types of actuators. (a) Basic-type actuator. (b) Bridge-type
actuator.

previous work [1], [2] describes some designs that achieve
this goal.

B. Sandwiched Actuation Model for Self-Folding

The actuator is composed of three layers (Fig. 4). The top
and bottom layers of the actuator are heat resistant materials
(e.g. paper or Mylar). The middle layer is a SMP (e.g.
prestrained polystyrene or polyvinyl chloride shrink film).
Since all layers are strongly attached to each other, when
the actuator is exposed to a uniform energy source, such as
heat, light or water, a section of the uncovered middle layer
shrinks, allowing the hinge to fold.

The spaces wt , wb of the top and bottom layers determine
folding angles and directions (Fig. 4). For example, since
actuator (a) is wider than (b), (a) folds to a greater extent.
The actuator pictured in Fig. 5(c) bends in the other direction
because the gap of the bottom layer is wider than the gap of
the top layer.

Fig. 5 shows two types of actuator design. The basic-type
actuator has simple gaps on each top and bottom layer (Fig.
5(a), [2]). The bridge-type actuator has a simple gap on one
side and a gap with a bridge on the other side (Fig. 5(v),
[1]). Bridges hold object faces together during fabrication
and reduce the number release cuts required.

III. SELF-FOLDING SHEET DESIGN COMPILER
The design compiling algorithm converts a shape repre-

sented as a 3D mesh1 shape or a 3D origami design2 structure
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Fig. 6. (Left) The folding angle at a crease is the supplement of the dihedral
angle. (Right) A crease can be folded as either a mountain fold or a valley
fold.

into a self-folding sheet design. Fig. 2 shows the steps of
the algorithm and the development process for self-folding
sheets: (1) unfolding a given 3D structure, (2) computing the
fold angles, (3) constructing a 2D sheet crease pattern, and
(4) constructing a 2D sheet design. Fabrication files for the
sheet design are then output by the algorithm.

A. Unfolding the 3D Shape

The objective of this algorithm is to compute the geometry
of a 2D sheet that can be folded into the given 3D shape.
Several algorithms exist to unfold 3D meshes or 3D origami
designs [18], [28], [29]. Given a mesh, the compiling algo-
rithm constructs a net3 of the mesh on a plane without any
collisions.

In this paper, a mesh is M = (V,F) where V is a finite
set of the vertices and F is a finite set of the faces. A net
is N = (V ′,E ′,F ′,T ), where V ′ is a finite set of the vertices,
E ′ is a finite set of the edges e′ = {a,b}, a,b are in V ′,
F ′ is a finite set of the faces, T is a finite set of (e′, t),
and t is a mark. e(e′) ∈ E(M) is an original edge of e′ ∈ E ′.
f ( f ′)∈ F(M) is an original face of f ′ ∈ F ′. Since all vertices
of a net are originally from a mesh, during the unfolding
process, these tracking functions can be easily constructed.

Although all meshes are unfolded on a plane, some meshes
must be unfolded as a net with multiple disconnected groups
of faces [30]. However, by tracking the origin of each edge,
information for the connections between disconnected face
groups can be accessed.

B. Computing Fold Angles

The goal of this step is to compute the fold angles
associated with all edges of a given mesh.

In origami theory [17], an edge (hinge) is a line segment
between two faces. A fold angle of the edge is the supple-
ment of the dihedral angle between two faces (Fig. 6 left).
The sign of the fold angle is determined by the hinge: either
a mountain fold or a valley fold (Fig. 6 right).

Theorem 1: Given a mesh, a finite set U of all fold angles
of the mesh are computed in O(n2 ×m) time and O(n2)
space, where n vertices and m faces are in the mesh.

Proof: For each edge, if the edge is not cut, there
are two neighboring faces sharing the edge (Alg. 1 Step 1).
By using the dot product and cross product of their natural
vectors, the algorithm calculates the fold angle (Step b, c).

1A polygon mesh is a collection of faces that defines a polyhedral object.
2A origami design is a folded state of a paper structure encoded with a

crease pattern and folded angles [5]
3A net of a mesh is an arrangement of edge-jointed faces in a plane.



Since there are at most n2 edges, the algorithm computes
and stores all angles in O(n2×m) time and O(n2) space.

Computing Fold Angles
1) Given a mesh M = (V,F), where all the natural

vectors of the faces point outside and the vertices
of each face (v1,v2, ...,vk) are positioned counter-
clockwise from top view.

2) For each edge e= {a,b} ∈ E(M) where e is not cut.
a) Find two faces f1, f2 where f1 contains direc-

tional edge (a,b) and f2 contains directional
edge (b,a).

b) Get u = acos( n1�n2
|n1||n2|

), where n1, n2 are the
natural vectors of f1, f2, respectively.

c) If (a,b) and n1× n2 point to different direc-
tions, assign ‘-’ to u; otherwise assign ‘+’ to
u.

d) Insert (e,u) into a finite set U .
3) Output U .

Algorithm 1: Algorithm to computing fold angles

C. Constructing a Self-Folding Crease Pattern
The goal of this step is to take as input the 2D crease

structure and the fold angles of a mesh and generate a crease
structure that will self-fold the desired angles. Each edge in
the original crease structure is thus mapped to a new crease
structure capable of folding by the desired angle.

In this section, we show that given the crease structure
and the fold angles of a mesh, the algorithm constructs a
correct self-folding crease pattern (Thm. 2). Lem. 1 shows
construction of a self-folding crease pattern, and Lem. 2
shows correctness of this crease pattern.

Lemma 1: Given a mesh M, its unfolding net N and its
finite fold angle set U(M) (Sec. III-A, Thm. 1), Alg. 2
constructs a self-folding crease pattern in O(n2) times and
space.

Proof: Given M, N = (V ′,E ′,F ′,T ), and U(M), for
each edge e′ ∈ E ′, Alg. 2 finds fold angle u of its original
edge e(e′) in M, and collects u as a folding information T ′.
By replacing T containing crease information (cut or hinge)
to T ′ containing desired angle information, Alg. 2 builds and
outputs a self-folding crease pattern (V ′,E ′,F ′,T ′) in O(n2)
time and space.

Lemma 2: Given a mesh M, if a self-folding crease pattern
N is generated by Alg. 2, M′(N) is equal to M, where M′(N)
is the folded state of N

Proof: Let L = { f ′1, f ′2, ..., f ′k}, where ∃e(e′) = ∃e(e′′),
e′ is an edge of f ′i , e′′ is an edge of f ′j, j < i, and L = F ′. Let
Lp be { f ′1, f ′2, ..., f ′p} ⊆ L. Let M′t be M(Nt). Let F(M′t ) be
{ f ′′1 , f ′′2 , ..., f ′′t } where each f ′′i is a face of the folded state
of f ′i .

For each t ≥ 1, P(t) is M′t = Mt where Lt = F(Nt).
Basis: P(1): M′1 = M1 because f1 = f ′′1 .
Induction step: For each k≥ 1, we assume that P(k) is true
and we show that it is true for t = k+1.

Self-Folding Crease Pattern Construction
1) Given a mesh M, its net N = (V ′,E ′,F ′,T ) and a

finite set U(M) of (e,u) where e ∈ E(M) and u is
a fold angle.

2) For each e′ ∈ E ′, If (e(e′),u)∈U , then insert (e′,u)
into T ′, where u is a fold angle.

3) For each e′ ∈ E ′, where e′ is a cut, then insert
(e′,〈cut〉) into T ′.

4) Output self-folding crease pattern (V ′,E ′,F ′,T ′) .

Algorithm 2: Algorithm to construct a self-folding crease
pattern.Example of folding to achieve a bigger folding angle
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Fig. 7. Three examples of simple self-folding sheets embedding one, two
and three actuators. The arrows show the shrinking directions.

The hypothesis states that M′k = Mk, and fk+1, f ′′k+1 are the
same shape. By the definition of Lk+1 (= Fk+1), f ′k+1 must
be connected to f ′s ∈ Lk and f ( f ′k+1) is connected to f ( f ′s).

Let u′ be the fold angle of e′ between f ′′s and f ′′k+1. Then
u = u′ where u is the fold angle of e(e′). Thus, fk+1 = f ′′k+1
and F(M′k+1) = F(Mk+1). Therefore M′k+1 = Mk+1 and P(t)
is true.

Theorem 2: Given M, N, and U(M), Alg. 2 generates
correct a self-folding crease pattern in O(n2) time and space,
where n is the number of the vertices.

Proof: Lemma 1 shows Alg. 2 builds a self-folding
crease pattern in O(n2) time and space. Lemma 2 shows this
crease pattern is correct. Therefore, Thm. 2 is true.

D. Constructing a Self-Folding Sheet Design for Fabrication
Files

This step constructs a self-folding sheet design by drawing
all actuators of the sheet. Like an actuator composed of three
layers, a self-folding sheet which is a cluster of the actuators
is also composed of three layers. Fig. 7 shows an example
design of a simple self-folding sheet.

An actuator design is ((wt ,wc,wb),bl ,bw)), where wt , wc
and wb are the gaps on the top, middle and bottom sheets,
respectively, and bl and bw are the length and the width of
the bridge (Fig. 5 (b)). If a variable of a design is �, then
the algorithm skips the drawing of its layer. For example,
if wc is �, the algorithm skips the drawing of the middle
layer gap. If bl and bw are �, the actuator design does not
have a bridge. ((wt ,�,wb), (�,�)) and ((wt ,�,wb),(bl ,bw)),
respectively, represent the actuators in Fig. 5 (a) and (b).



Constructing Self-Folding Sheet Design
1) For each (e,a) ∈ T , where a given self-folding

crease pattern is (V,E,F,T ) and a is a fold angle
(a 6∈ 〈cut〉).

a) d← f (a), where f is a given design mapping
function and d is an actuator design.

b) If (e,〈cut〉) 6∈ T :
i) Draw d on e (Alg. 4).

c) If (e,〈cut〉) ∈ T :
i) wmax← max(wt(d),wb(d)).

ii) Draw ((wt(d),wmax,wb(d)),(�,�)) on e.
iii) T ← T −{(e,〈cut〉)}.

2) For each (e,〈cut〉) ∈ T , draw ((0,0,0),(�,�)) on e.
3) Output all actuator designs on the three layers as a

self-folding sheet design.

Algorithm 3: Algorithm to construct a self-folding sheet
design

Drawing Actuator
1) Given an edge {a, b}, calculate the rotation angle4

θ and the center point5 c.
2) Given an actuator design, draw the θ -rotated actu-

ator design on c.

Algorithm 4: Algorithm to draw an actuator

Let f : A→ D denote a design mapping function, where
A is a set of angles between −180◦ and +180◦ and D is a
set of actuator designs ((wt ,wc,wb), (bl ,bw)). Given a fold
angle, we can draw the design of the three-layered actuator
on three planes.

Theorem 3: A self-folding crease pattern has a valid self-
folding sheet design, computable in O(n2) time and space,
where n is the number of the vertices.

Proof: A mesh has two types of edges: cuts and hinges.
A net unfolded from a mesh also contains cuts and hinges but
some cuts are originally from the hinges of the mesh. Alg.
3 draws the valid actuators for these edges. Step b draws
actuators for the hinges in the net. Step c draws actuators
for the cuts in the net which are originally the hinges in the
mesh. Step 2 draws actuators for the cuts which were cuts
in the mesh. Alg. 4 correctly draws each actuator on each
layer of the self-folding sheet design. Each Step 1 and 2 of
Alg. 3 runs in O(n2) time and space.

IV. ALGORITHM IMPLEMENTATION

A. Software for Compiling the Printable 2D Design

We implemented the design algorithm (Fig. 2) in Java.
The input file formats are Wavefront .obj for a 3D mesh and

4Where a = (xa,ya) and b = (xb,yb), if xa 6= xb then θ = atan( yb−ya
xb−xa

)
and if xa = xb then θ = 180◦

5c = (a+b)×0.5
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Fig. 8. Graph of an implemented actuator design function for the pin
alignment process. The inset images show the test strips used to characterize
the fold angle as a function of the size of the gap on the inner structural
sheet.

AutoCAD .dxf for a 3D origami design [5]. The output files
are .dxf format.

To support various manufacturing processes of the self-
folding sheet, the software supports script files to de-
fine the template of the fabrication files (outputs). Since
we constructed self-folding sheets with two manufacturing
processes, we built two template scripts for the folding
alignment manufacturing process [1] and the pin alignment
manufacturing process [2].

B. Actuator Design Function

As started in Sec. III-D, given a fold angle, an actuator
design mapping function f outputs an actuator design.

Definition 1: A design mapping function is f : A→ D,
where:
1. A is a set of the angles (−180◦ ≤ a≤ 180◦),
2. D is a set of the actuator designs d = (w,b),
3. S is a finite set of the fold angle samples (a,d),
4. (0,((0,�,0),b)) ∈ S,
5. if (a,d) ∈ S, then f (a) = d, and
6. if (a,d) 6∈ S, then

f (a) = (w(d1) +
a−a1
a2−a1

× (w(d2)−w(d1)), b(d1)), where
a1 < a < a2, (a1,d1) ∈ S, (a2,d2) ∈ S, a1 < a3 < a2 and
(a3,d3) 6∈ S.
Fig. 8 shows a graph of an implemented actuator design
function. To characterize the fold angle as a function of
the actuator geometry, we built eight self-folding strips with
gaps on the inner layer in the range of 0.25mm–2mm, and
baked them at 170◦C. Each strip has three actuators with the
identical gap dimensions. After baking, we measured the fold
angle of each self-folded actuator. According to this graph,
the actuator design function outputs the design of an actuator
(5, 6 of Def. 1).
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Fig. 9. (Top) Self-folded 3D shapes: the humanoid, house and egg 1
shapes. The egg 2 shape is shown in Fig. 13. (Bottom) Input models of
the humanoid, house, and both eggs. We modeled the humanoid and house
designs with paper and coded them into origami designs. We modeled the
egg shapes using CAD software.

V. EXPERIMENTS

We designed the experiments to evaluate the end-to-
end pipeline for self-folding sheets. We built and baked a
humanoid-shape and a house-shape with the folding align-
ment fabrication process [1], and two egg shapes with the
pin alignment fabrication process [2] (Fig. 9). We constructed
the fabrication files with the design pipeline (Fig. 2) and the
actuator design function of each fabrication process (Fig. 8).

A. Design Pipeline

We built the humanoid and house origami shapes with
paper and then coded the shapes into origami designs [5].
The 3D shape of the humanoid was composed of 41 faces
and the 2D sheet contains 44 self-folding actuators (Tab. I).
The 3D shape of the house was composed of 9 faces and
the 2D sheet contains 8 actuators. Fig. 10 (a)(b) shows the
fabrication files of the human shape and the house shape.

The egg shape was modeled in CAD software (Solidworks,
Dassault Systmes SolidWorks Corp.), and exported as a 3D
mesh with 2538 faces. We reduced the number of the faces
to 50 using the MeshLab software [31], and then unfolded
it with our software. The 2D sheet of the egg contains 8
actuators (Tab. I). Fig. 10 (c) show the fabrication files of
the egg shape. We generated the fabrication files for each
egg shape from this model and made the egg 1 shape is
25% bigger than the egg 2 shape.

The folding range of the humanoid and house models were
wider than the range of the egg model (Tab. I). However,
since most fold angles of humanoid and house models were
90◦, the egg model having no identical fold angles was more
complex then the humanoid and house models

B. Self-Folding

After we built the fabrication files, we generated physical
self-folding sheets for the humanoid, house, and egg shapes.
Fig. 11 shows two self-folding sheets built by the folding
alignment process and the pin alignment process (Tab. II).

TABLE I
COMPLEXITY OF SHAPES

Humanoid House
# of Faces 41 9

# of Actuators 44 8
Folding Range -100.0◦– 100.0◦ -56.0◦– 135.0◦

Egg 1 Egg 2
# of Faces 50 50

# of Actuators 48 48
Folding Range -0.6◦– 55.0◦ -0.6◦– 55.0◦

(a)
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Fig. 10. (a)(b) Fabrication files of the folding alignment process generated
for the humanoid and house. (c) Fabrication files of the pin alignment
process generated for the egg. (a)(b) Cut on the center guides the folding
alignment while the top layer (right) and bottom layer (left) are sandwiched.
(c) Tiny holes are for the pin alignments. (Left) Cuts for the top layer.
(Middle) Cuts for the bottom layer. (Right) Cuts for the all layers.
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Fig. 11. Self-folding sheets (before bake) for Humanoid (left) and Egg
(right).
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Fig. 12. Frames from experiment of the self-folding humanoid shape by
uniform heating. The sheet was built with the folding alignment process.
The time elapsed since exposure to uniform heating is indicated in the
higher-right corner of each frame (in minutes and seconds).

TABLE II
FABRICATION AND MATERIAL OF SELF-FOLDING SHEETS

Humanoid & House Egg 1 & Egg 2
Fabrication Process Folding Pin

Folding Temp. 55◦C– 65◦C 165◦C– 170◦C
Top&Bottom Layers Mylar Paper

Middle Layer PVC PP

Each self-folding sheet was baked in an oven. We baked
the humanoid and house at 55-65◦C without preheating the
oven (we put each sheet into the oven in room-temperature,
and then increased the heat up to 65◦C). The egg was
baked in an oven preheated to 170◦C. When we opened the
oven to insert the sheet, the temperature dropped down to
approximately 165◦C. All sheets were hung in the oven to
reduce the effect of gravity on the self-folding process. Figs.
12 and 1 show the frames of the experimental videos of the
self-folding of the humanoid and egg shapes.

C. Results and Discussion

Through our pipeline, we successfully constructed four
self-folded structures. Tab. III shows the size of each shape
before and after transformation.

Additionally, our approach designed and folded these
structures rapidly (Tab. IV). We ran the implementation of
the design algorithm 10 times for each model. The computing
time of each model was less than 0.5 seconds on a laptop.
The self-folding time was also relatively short. While the
humanoid and house shapes folded themselves in under 5
minutes, the egg shape folded itself in less than 1.5 minutes.

The most time consuming step of the experimental design
and fabrication of self-folding structures was the physical
construction of the self-folding sheets. Since the design and
folding steps are automated, these steps were finished in less
than 5 minutes (Tab. IV). However, although we have clearly
defined fabrication processes, because they still required

TABLE III
SIZE OF SELF-FOLDED SHAPES

Humanoid House
Sheet Size (mm) 86×112 114×69
Object Size (mm) 71×76×27 46×38×29

Egg 1 Egg 2
Sheet Size (mm) 191 x 171 325×281
Object Size (mm) 42×51×42 56×73×59

TABLE IV
COMPUTING AND SELF-FOLDING TIMES

Humanoid House
Computing Time 478.17 ms 464.5 ms

Folding Time 4m 58s 4m 57s
Egg 1 Egg 2

Computing Time 478.2 ms 464.5 ms
Folding Time 1m 18s 1m 26s
CPU Intel Core i3-2350M (2.30GHz)
RAM 4 GB
Storage 500GB 5400rpm 2.5” HDD

(TOSHIBA MK5076GSX)
Graphics Intel HD Graphics 3000

some manual labor (C02 laser machining, alignment, layer
lamination, release cutting), took 2 - 3 hours to construct
each self-folding sheet.

Since an egg shape was heavy and complex, it did not
have enough force to completely fold its lower extremities
against gravity. As a consequence, the back side was not
completely closed in the oven (Fig. 13). To correct these
errors, we baked a model one more time with a shrink film
cover. We covered this model with a thin layer of shrink film
and baked the model in an oven at 170◦C

While the house and egg shapes were underfolded, the
humanoid shape was overfolded at the leg area. The reason
for the overfolding in the humanoid’s legs, but not the arms,
is that the length of the edges along the legs was longer than
along the arms but the size of the associated bridges was
constant.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we explored and analyzed an end-to-end
approach to making self-folding sheets activated by uniform-
heat. We introduced a design pipeline which automatically
generates folding information, then compiles this information
into fabrication files. We proved the correctness of the
file construction by our algorithms. We also demonstrated
the implementation of this pipeline and characterized the

Fig/heatsheet/eggShrink4be, eggShrink4af
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After Before2Fig. 13. Before (left) and after (right) baking an egg model with a shrink
film.



actuator design function to convert the theoretical design to
a physical self-folding sheet. Finally, we demonstrated this
approach experimentally by generating self-folding sheets
for the fabrication of three target models. The pipeline
correctly designed and built the sheets. The experiments
were successful, and the sheets were folded themselves in
relatively short times when exposed to uniform heating.

Some practical challenges remain to be addressed in the
physical fabrication of self-folding sheets. Delamination of
the SMP layers from the structural layers occurred near the
edges of our self-folding sheets for the egg shape. This
may be mitigated by sealing the edges of the sheet or with
improved adhesion. Gravity also retarded the folding of the
extremities of the egg shape. An approach to reducing the
effect of gravity during folding or accounting for this affect in
the design would reduce folding errors (over/underfolding).

In the future, we will work on a new pipeline for multiple
stage folding. Since we used sheets of SMP to fabricate
our self-folding sheet designs, all actuators of that sheet
activate at the same temperature. However, it may be possible
to design a process that activates multiple embedded SMP
sheets at different temperatures.
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