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Abstract

This paper describes a method for manufacturing complex three dimensional curved
structures by self-folding layered materials. Our main focus is to first show that the
material can cope with curved crease self-folding and then to utilize the curvature to
predict the folding angles. The self-folding process employs uniform heat to induce
self-folding of the material and shows the successful generation of several types of
propellers as a proof of concept. We further show the resulting device is functional
by demonstrating its levitation in the presence of a magnetic field applied remotely.
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1 Introduction

We are interested in developing rapid manufac-
turing of complex structures. To this end, we
combine parameterized designs on origami pat-
tern with planar fabrication into a new process
for creating complex three dimensional shapes
with curved surfaces by self-folding. In this pa-
per we apply this fabrication method to man-
ufacturing several types of propellers. We show
experimentally that the propellers are functional
units. While the results in this paper focus on
propellers, they can be generalized to other com-
plex shapes.

A rapidly increasing demand for manufactur-
ing complex, iterative, or fine structures has
drawn attention toward a fabrication technique
that combines planar fabrication and origami-
inspired transformations [1–3]. Recent innova-
tions in origami technique [4, 5] have demon-
strated that curved crease folding enables the
generation of three dimensional geometries un-
achievable in traditional prismatic paper fold-
ing [4], which uses straight creases alone.

In the curved folding process, it is well
known that folding also necessitates bending the
sheet [4]. Various investigations have been con-
ducted focusing on curved crease designs [6], rul-
ings (see Section 3 for an explanation of rul-
ings) [7, 8], sheet bending [9], formulation of the
folding principle [10–12], or applications pertain-
ing to car body design [13].

Self-folding is a recent technique aimed at
rapid fabrication of objects by the folding of
many small and complex creases [14–19]. To
our knowledge, few approaches have attempted
self-folding curved creases [20]. The engineering
challenges here are (1) to precisely predict the
folding angle of a curved crease, (2) to achieve
self-folding of curved creases into a functional
structure, and (3) to actuate the device after it
has been self-folded, as a way of demonstrating
functionality.

Under these presented challenges and goals,
this paper contributes the following:

1. Simulations for estimating curved crease
folding angles

2. An application of this algorithm toward de-
signing propellers

3. An algorithm for computing self-folding
crease patterns for objects with curved sur-
faces, such as propellers

4. A series of self-folding experiments for dif-
ferent propellers

5. Levitation experiments of the self-folded
propellers by remotely applying a rotational
magnetic field.

2 Outline

The methodology of curved crease self-folding
described in this paper consists of the follow-
ing steps. We model and derive a method for
predicting a folding angle of a curved crease
(Section 3). We outline the general guidelines
for making an origami propeller (Section 4.1).
We analyze the geometric relationship between
the crease and folded propeller structure (Sec-
tion 4.2). We develop an algorithm for au-
tomatically designing various types of origami
propellers (Section 4.3). We build an electro-
magnetic coil system with supporting electron-
ics for remote actuation of the propeller (Ap-
pendix). We show the experimental results
of self-folding curved creases (Section 5.1) and
demonstrate self-folding of propellers with dif-
ferent crease curvatures (Section 5.2). We inves-
tigate the functionality of the folded propeller
(Section 5.2). We conclude the study (Section 6).

3 Curved Crease Folding

This section investigates a basic theory of curved
crease folding. We numerically analyze the re-
lationship between shapes of various curvatures
drawn on a two-dimensional crease pattern and
the resulting three-dimensional folded shapes
and curvature. Here, we employ the superellipse
as an example of general curvature. A character-
istic of the Superellipse is that it can represent
a sector of major shapes such as squares, circles,
or triangles, continuously being transformed by
changing one parameter.
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3.1 The Model

The curves we investigate are superellipses de-
scribed on an x-y plane centered at x = π

2 with
radius κ = π

2 :∣∣∣∣x− κ

κ

∣∣∣∣n +
∣∣∣y
κ

∣∣∣n = 1. (1)

The superellipse has a unique characteristic
such that, by changing a single parameter, n,
it changes curvature continuously from a square
(n → ∞) to a circle (n = 2), to a triangle
(n = 1), and to a “star” (n < 1), while main-
taining the width and the height (see Fig. 1 (a)).
This is an ideal characteristic for our study since
various curvatures can be compared in a single
parametric space.

The positive half of the superellipse equation
is

y = κ ·
(
1−

∣∣∣∣x− κ

κ

∣∣∣∣n) 1
n

. (2)

We depict the curves of n = 1.5, n = 2, and
n = 4 in Fig. 1 (a), and show the illustration of
the folded plane in Fig. 1 (b) with an example in
the side picture.

The folding angle α is the angle between the
two sides of the curve after it is folded, and whose
change with respect to x can be described as [11]

dα

dx
=

tan(α(x))

2 · dx
ds

K2D(x)

·(cotβL(x)− cotβR(x)), (3)

where s is the arc length of the curve, which is a
function of x:

s(x) =

∫ x

0

√
1 +

(
dy

dx

)2

dx, (4)

K2D is the curvature of the flat curve defined as

K2D =

∣∣∣ d2ydx2

∣∣∣(
1 + ( dydx)

2
) 3

2

, (5)

and β· (· ∈ [R,L]) is defined as the angle be-
tween the tangent line to the curve and the rul-
ings of the surface that are made from the fold
(Fig. 1 (b)).

Taking the derivative and reciprocal in Eq. (4)
yields

dx

ds
=

1
ds
dx

=
1√

1 +
(
dy
dx

)2 . (6)

Rulings (or ruling lines) are straight lines that
define a space curve by sweeping along the sur-
face (shown as the red dot lines in Fig. 1 (b)
and Fig. 8 (b)). Hypothesizing that both sur-
faces formed by the crease form cylindrical cur-
vatures when folded into three dimension, β· are
calculated using vertical rulings (Fig. 1 (a)).

With vertical rulings, the angle βR can be
computed as

βR = tan−1

(
1
dy
dx

)
, (7)

and βL is simply

βL = π − tan−1

(
1
dy
dx

)
. (8)

The derivative of the superellipse equation is

dy

dx
= −sgn

[
x− κ

y

]
·
∣∣∣∣x− κ

y

∣∣∣∣n−1

. (9)

From Eq. (9) we obtain the second derivative
of y as

d2y

dx2
= (1− n)

∣∣∣∣x− κ

y

∣∣∣∣n−2

·
(−x+ κ

y2
· dy
dx

+
1

y

)
−
∣∣∣∣x− κ

y

∣∣∣∣n−1

· 2δ
(
x− κ

y

)
,

(10)

where δ is the Dirac delta function.

3.2 Simulation Results

Fig. 2 shows the simulation results of Eq. (3) for
different surface conditions, which was run for n
values of 1.5, 2, and 4. As the stiffness of the
sheet material affects the bendable curvature of
the surface and thus affects α, to run the simula-
tion, we chose α at the end of the creases (α| dy

dx
=1

;

termed αend) by supposing that the entire crease
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consists of two straight lines divided from the
middle of the curve to the edges (an example
shown as the green line in Fig. 1 (a)). This way,
when the surface is fully folded flat, αend = Γ−γ
(Γ and γ were obtained by taking the inverse tan-
gent of the ratio of the horizontal and vertical
radii of the curve), and when the surface folds
up to π/2, αend = (Γ− γ + π)/2, premising that
the actual value falls between them. This condi-
tion was selected by referring to our pre-tested
manual folding experiments and the self-folding
experiments appearing in the following sections.

The simulated result showed that the crease
for n = 4 folded the most acutely while that
for n = 1.5 folded the least in the middle of
the creases (called αmiddle) This trend is more
clearly displayed in Fig. 3 with the change of
folding angle αmiddle with respect to n. The
crease folded more as n increased, irrespective of
αend, although the tendency was more apparent
for smaller values of αend. This result suggests
that when we plan to induce a difference in fold-
ing angles in real fabrication, it would be bet-
ter to aim for smaller folding angles in order to
achieve clear differentiation in their folding an-
gles over different curved creases. We also verify
this trend in later experiments (see Section 5.1).

Another noticeable trend is that α increased
toward the center of the crease when αend > π

2 ,
while it decreased when αend < π

2 This trend
was observed with other conditions of αend in
the simulation, and is confirmed with manually
folded models.

See the folding angles from experiments in Sec-
tion 5.1.

4 Origami Propeller

This section builds further upon the established
theoretical implications of curved crease folding
to present the actual designs used in fabricating
3- and 4-blade propellers based on the origami
designs introduced by Mitani [21] and the ge-
ometric rationale for having designed them in
this manner. We first show a few largely well-
known design guidelines on propeller design de-
rived from the theories of aerodynamics. We

then analyze the geometric relationship between
a crease pattern and a three dimensional pro-
peller so that the design parameters such as
widths and lengths of blades can be dynamically
optimized and reflected in the creases.

4.1 Design Guidelines

From helicopter aerodynamics, the thrust force,
Fth, produced by a propeller consisting of multi-
ple rotor blades is

Fth = Ct ρAω2 r2

∼ Ct ρω
2 r4, (11)

where A is the disk area swept by the blades, Ct

is the aerodynamic thrust coefficient intrinsic to
the blade profile, ω is the angular velocity, and
r is the length of the blade [22]. The Reynolds
number, Re, for the aerodynamic flow of a rotor
in water is:

Re =
c ω r

ν
, (12)

where c is the mean chord length of the blade
(approximated at 1 cm), ω is the angular veloc-
ity (approximated at 30Hz · 2π), and ν is the
kinematic viscosity. Approximating c as 1 cm,
ω ∼ 30Hz · 2π, r ∼ 1 cm, and ν = 106m2/s,
being the kinematic viscosity of water at 20◦C,
we obtain a Re ∼ 19000. Given the high Re
number and the fact that each blade of the ro-
tor will be passing in the aerodynamic wake of
the blade ahead of it (in hovering mode) the flow
is expected to be turbulent. Thus a larger an-
gle of attack of 45◦ for the rotor blades is cho-
sen over the smaller pre-stall angles of attack to
maximize the lift coefficient curve. Although in-
creasing drag, this regime features a broader lift
coefficient maxima thus allowing variability in
angles of attack with little effect on lift.

Furthermore, the following facts on propeller
engineering have been used as general design
guidelines:

1. The lift force is proportional to the square of
both angular velocity and disk radius swept
by the blades, r, implying that scaling down
of the disk area needs to be compensated by
a proportional increase in rotational veloc-
ity, which greatly increases required power.
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2. Longer blades provide larger lift forces at
the expense of added weight.

3. A 45◦ angle of attack is chosen for each rotor
blade per the above discussion.

4. A spanwise twist along the rotor blade that
increases the angle of attack at the root and
decreases it at the tip compensates for the
increasing incoming stream velocity along
the blade, thus allowing for a more uniform
lift force profile [23]).

5. Increasing the number of blades mostly
serves the purpose of reducing vibratory
loads, since the power requirement increases
proportionally with blade count.

4.2 Blade Geometry

The crease pattern of the 4-blade propeller is ro-
tationally symmetric and is composed of four
straight and four curved lines, as shown in
Fig. 5(a). The center point is O, and a curved

line has two sections: a curved section ÔI and
a straight section IK. The curve can be one of
many different types of a superellipse sector and
does not have to intersect at position I. In this
instance, a circular sector (n = 2) is used for
the curve, and the angle of incidence is set to be
̸ IKJ 45◦.

Fig. 5 (b) shows the folded propeller. Each
of the corners A,B,C,D in Fig. 5(a) becomes
an end A′, B′, C ′, D′ of the blades in Fig. 5 (b),
respectively. Each of the points E,F,G,H in
Fig. 5(a),which represent the maximum ampli-
tude of the circular sector curve, folds to the
points E′, F ′, G′,H ′ of the blades in Fig. 5 (b),
respectively.

Each point O, I, L in Fig. 5(a) is placed on
point O′, I ′, L′ of the blades in Fig. 5 (b), respec-
tively.

1. Blade Length. Let a denote the distance
between O and I, b denote the distance be-
tween I and J , and t denote the shortest
distance between F and OI, where O′ is the
center point and ̸ OJB is 90◦. In the folded
propeller, the point I ′ is under the point
O′ at the center. Since ̸ IKJ is 45◦, the
length of BK is a and the length of JK is

b. The length of each blade is the equal to
BJ , which is a+ b (apothem).

2. Blade Width. The width of the blade is t+b
because the distance between E′′ and center
line (I ′L′) is t, and the distance between I ′

and B′K ′ is b, where E′′ is the projected
point of E′ to the bottom (the plane of
△I ′L′B′) and point K ′ is point K in folded
status.

3. We look next at the outer circle formed by
�E′F ′G′H ′. Since E′F ′ of the folded pro-
peller is 2t, the radius of the outer circle is
2t√
2
.

The crease pattern of the 3-blade propeller is
shown in Fig. 6(a). The design is similar to
Fig. 5(a) in that all of the curvature lines are
comprised of both a straight line and a curved
line and they are pointed symmetrically toward
the center O. As with the 4-blade propeller, each
curved line is composed of two parts: a curved
section ÔG and a straight section GI. The curve
can be any line of the superellipse. We select 30◦

for the angle ̸ GIH.
Fig. 6 (b) shows the folded 3-blade propeller

seen from the top. Each corner A,B,C in
Fig. 6(a) becomes each end A′, B′, C ′ of the
blades in Fig. 6(b), respectively. Each point
D,E, F in Fig. 6(a) is placed on each of the
points D′, E′, F ′ of the blades in Fig. 6(b), re-
spectively. Each point O,G, J in Fig. 6(a) is
placed on each of the points O′, G′, J ′ of the
blades in Fig. 6(b), respectively.

1. Blade Length. Let O denote the center
point, and let ̸ OHB be 90◦. Let a denote
the distance between O and G, b denote the
distance between G and H, and t denote the
shortest distance between E and OG. In the
folded propeller, point E′ and the correlat-
ing points on the other curved lines meet at
the center. Since ̸ GIH is 30◦, the length
of BI is

√
3a and the length of IH is

√
3b.

The length of each blade is the equal to BH
and is

√
3(a+ b).

2. Blade Width. If we project the propeller to
the bottom, the angle between the projected
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lines of D′E′ and G′O′ is 120◦. The width
of the blade is t√

3
+ b because the distance

between E′ and the center line is t√
3
, and

the distance between J and CH is b.

3. We look next at the outer circle formed by
△D′E′F ′. Since E′F ′ of the folded propeller
is 2t, the radius of the outer circle is 2t√

3
.

4.3 Auto Generation of a Self-folding
Crease Pattern and the Sheet

The fabrication of the propeller that was used
in the study followed a protocol established pre-
viously by [16], used in [19], and is briefly out-
lined here. The developed self-folding sheet has
a three layer structure, wherein a heat-sensitive
contraction sheet is sandwiched between two
rigid structural layers (Fig. 4). When heat is
applied to the structure, the middle contraction
layer shrinks. As a result, the entire structure
folds in the direction that opens as a gap in the
sheet.

We developed a Matlab program for auto-
generation of multi-blade propeller crease pat-
terns that allows users to vary the parame-
ters of the design for the purpose of optimiza-
tion. A graphic interface displays the front and
back designs and allows users to adjust the gap
widths along the folds (Fig. 7). A sample auto-
generated pattern for a 4-blade propeller with
circular curvature is shown in Fig. 7 (a). User-
controlled parameters include: (1) the number
of blades, (2) the type of curvature, either n =
1.5, 2, 4, or sinusoidal, (3) the apothem of the
regular polygon, (4) the length of the curved
crease, (5) the amplitude of the curved crease,
(6) the incident angle of the curved crease, and
(7) the gap width.

Finally, holes for the guiding pole, which was
employed to stabilize the posture of a propeller
during the levitation experiments, was added in
each blade. When folding is complete, the hole
appears as the conjugation of half-folded circles.

In the fabrication process, the generated
crease pattern was printed onto a rigid sheet ma-
terial using a laser cutter machine. After the ex-
cessive components of the pattern were removed,

the construction sheet (polyvinylchloride; PVC)
was placed between the front and the back forms
of the crease pattern. These two layers were
then laminated upon one another, sandwiching
the contraction sheet. Lastly, the entire struc-
ture was subjected to uniform thermal applica-
tion in a heated oven, thus self-folding from a
two-dimensional crease pattern into a three di-
mensional propeller.

5 Results

This section presents the results from experi-
ments on self-folding and on propeller levitation.

5.1 Single Curved Crease Self-folding

We fabricated three types of self-folding sheets of
curved creases that we modeled in Section 3 and
compared the folds to the simulated values of α.
The self-folding experiments were performed on
water in an oven (Cuisinart TOB-100) by setting
the temperature to about 110◦C. The water was
pre-warmed to approximately the deformation
temperature of PVC (∼ 50◦C) before the place-
ment of a self-folding sheet. The sheets were
folded on water to provide uniform heating (see
[24]). In addition, folding on water helps reduce
friction between the propeller and the ground.
Under the set temperature of 110◦C, successful
self-folding of the curved crease was observed
(Fig. 8 (a)). Once folding started, the process
maintained the speed of folding for a while be-
fore it slowed down and converged to the final
angle.

The folded sheets are displayed in Fig. 8 (b).
In our measurements, the folding angles at the
middle (αmiddle) are 2.0 rad (113◦) for n = 1.5
crease, 1.9 rad (107◦) for n = 2 crease, and
1.1 rad (61◦) for n = 4 crease, showing that the
most acutely folded crease was from n = 4 and
the least folded from n = 1.5 (see the overlaid
plots in Fig. 2). This trend was predicted in
the simulation and also supports our intuition;
when n = 4, the crease has almost a straight
line in the middle. Approximating the curves
as a straight crease should result in yielding a
very small folding angle α. Conversely, when n
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is smaller, n = 1.5, the crease can be approxi-
mated as two straight lines going from the edges
intersecting in the middle. In this case, the fold-
ing angle reaches to π

2 given the surface can be
folded fully flat.

The surface of the n = 1.5 curve induced
the largest bend at the middle of the surface,
whereas the n = 4 curve showed at the edge
(compare the indications of ruling in Fig. 8 (b)).
The influence of the stiffness of the self-folding
sheet, which hindered the bending of the sur-
face and was not counted in the model, can
be recognized in the experimental results; with
n = 1.5 and n = 2.0, the αmiddle show smaller
(more acute) values than expected by the model,
whereas the influence can be seen on αend with
the n = 4 curve, in which smaller αend was ob-
served (αend = 1.96 rad (112◦) for n = 1.5 crease,
1.76 rad (101◦) for n = 2 crease, and 1.21 rad
(70◦) for n = 4 crease). This result implies a
potential to improve the model by reflecting the
stiffness of the material in rulings.

5.2 Propeller Self-Folding

We show the snapshots of self-folding with the
n = 2 (circular) curve propeller design in Fig. 9.

Self-folding took about 3 minutes, from when
deformation first began to when the sheet suc-
cessfully achieved the targeted propeller shape.
The self-folding successfully proceeded with 180◦

foldings along straight lines, resulting in about a
0.91 rad (52.2◦) angle of attack (Fig. 10 (a)). In
contrast, self-folded propellers of curved creases
n = 1.5 showed a low attack angle of 0.86 rad
(49.4◦), while creases n = 4 showed a high at-
tack angle of 1.08 rad (61.7◦) (Fig. 10 (b)).

We further attempted two types of propeller
self-foldings from the circular curve based on the
crease designs in Fig. 7(b),(c). Fig. 11 shows
the self-folded 3-blade propeller (on left) and
5-blade propeller (on right) for the verification
that our parameterized design generates valid
self-foldable propeller patterns. In the 3-blade
model, compared to the 4-blade propeller, the
number of blades are fewer and the length of the
creases of straight lines is longer compared to
the curved creases; thus, the design caused wider

folding angles along the curved creases. The
5-blade model shows opposite attributes when
folded. The folding angles of curved creases show
smaller values compared to the 3-blade model.
Currently, attaching paired magnets to odd num-
ber blade propellers is difficult for balancing pro-
pose, although we propose to utilize a diametri-
cally magnetized hollow cylindrical magnet for
future work.

5.3 Performance of the Propeller

To demonstrate its functionality as a self-folded
structure, we levitated the self-folded 4-blade
propeller inside water by remotely actuating it
with a magnetic field. For this purpose, two
pairs of two cylindrical magnets (axially magne-
tized, �3.27mm×H1.62mm, K&J magnet) were
horizontally attached onto the tip of two oppo-
site blades pointing in the same directions (see
Fig. 10 (b)). The two coupled magnets keep the
positions on a blade by pinching it from both
sides. To obtain a rotational magnetic field along
the horizontal direction, we powered two-paired
coil sets switching alternatively, accelerating the
rotational speed of the magnetic field from 20Hz
to around 40Hz (see Fig. 12 in Appendix: Re-
mote Magnetic Actuation). Fig. 12(b) shows
the height of levitation over time. The aver-
age heights of levitation for 15 s were 11.77mm
for n = 1.5, 14.69mm for n = 2, and 13.02mm
for n = 4, which corresponds to 1.01, 1.26, and
1.11 body lengths, respectively, showing that the
n = 2 propeller shows the best levitation level.
While in motion, the propeller iteratively experi-
enced levitation and step out resulting from the
levitation, changing the height repeatedly. Step
out occurred as the propeller moved afar from
the coils by levitation and thus received a weaker
magnetic field.

A unique behavior was from the propeller of
n = 1.5, where levitation proceeded slowly com-
pared to the other propellers due to the shallower
angle of attack. As a result, it showed a rather
long duration for levitation before stepping out,
appearing in the smooth trajectory in the fig-
ure. Despite the environment being underwater,
the experiment shows the functional motion as
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a propeller, which was generated by self-folding
from a sheet structure.

6 Conclusion

This study shows a method of rapid prototyp-
ing of 3D curved structures based on a self-
folding technique. We explore design and mod-
eling approaches for regulating folding angles
by changing the curvature of creases and ap-
plied this to the fabrication of propeller blades.
Our results demonstrating self-folding propellers
supported by mathematical estimation, auto-
mated crease generation, and self-folding mate-
rials shows promise for the automation of fab-
ricating complex three dimensional structures
through a folding process of layered intelligent
sheet materials.
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Appendix: Remote Magnetic
Actuation

A setup consisting of four electromagnetic
solenoid coils was employed to apply a rotational
magnetic field to the propeller. The magnetic
coils consist of copper wire wound on square
pillar-shaped ferrous cores of cross-sectional side
lengths 2D. An xyz coordinate set is defined for

each coil, such that the origin lies at the cen-
troid of each coil, the x − y plane is parallel to
the surface of the coil, and z is normal to the
surface, as illustrated in Fig. 13. A small mag-
net a distance from the coil can be regarded as a
magnetic dipole moment m. Assuming that the
magnet’s shape can be approximated as a spher-
ical shape of radius a, m can be described with
the saturation magnetization M sat as

m =
4

3
πa3M sat, (13)

where Msat is intrinsically given by the material
of the magnet.

The z-directed magnetic flux density Bz cen-
tered on the z axis at position z is

Bz =
µ0I

4π

2D2

(D2 + z2)
3
2

. (14)

The gradient along the z axis is then

−∂Bz

∂z
∝ 2z

(D2 + z2)
5
2

. (15)

When D ≪ z, using Taylor series, the force
that the magnet experiences is proportional to

−∂Bz

∂z
∼ 2z(

1 + 5
2D2 z2

) . (16)

The four coils were evenly spaced around the
central vertical axis and tilted at 45◦ from the
horizontal. The stage was set on the point where
the z axes of all the coils intersect. This config-
uration allows the generation of any arbitrary
magnetic field vector at the stage via the su-
perposition of individual fields of each coil (see
Fig. 13). In addition, a quasi-uniform field is
guaranteed with arbitrary strength along the
Gx − Gy plane and a non-uniform field along
the Gz-direction. Because the magnetic field
strength is stronger at positions closer to the
coils, the propeller can experience magnetic step
out as it levitates higher and enters a relatively
weaker magnetic field region.

The force F and the torque τ that the mag-
net experiences in a magnetic flux density B are
given as

F = (m · ∇)B, (17)

τ = m×B, (18)
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where B is the globally created superimposed
magnetic flux density of four coils. The torque
reaches the maximum when the relative angle
between the magnet and the applied field reaches
90◦.

In real measurements, the coil exerted mag-
netic fields of 7.0mT, 5.7mT, and 19.7mT at a
current flow of 4A measured at the center of the
surface at respective distances of z = 0mm (on
the surface), z = 10mm, and z = 40mm. The
amount and duration of the current to the coils
were driven by motordrivers (SyRen10), which
were manually controlled through serial commu-
nication with a PC via ArduinoMega.
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(a)
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Figure 7: Automated self-folding crease pattern generation. (a) The user interface. (b) Front and
back crease pattern of a 3-blade propeller. (c) Crease pattern of a 5-blade propeller. In a curved
crease, a superellipse and a straight line are connected smoothly at an inclination of 45◦.
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Figure 8: Self-folded curved creases with different curvature patterns. (a) The snapshots of the
n = 2 model while self-folding. (b) Self-folded curved creases (n = 1.5, 2, 4 from left to right,
respectively).
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Figure 9: Self-folding 4-blade propellers (n = 2 model). The whole process was completed in about
3 minutes.
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Figure 10: Self-folded 4-blade propellers. (a) The angled view. (b) Comparison of angle of attack
of n = 1.5, n = 2, and n = 4 propellers.
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